I12-JEEP: Joint Engineering, Environmental and Processing
|
Fabio
Arzilli
,
Margherita
Polacci
,
Giuseppe
La Spina
,
Nolwenn
Le Gall
,
Edward W.
Llewellin
,
Richard A.
Brooker
,
Rafael
Torres-Orozco
,
Danilo
Di Genova
,
David A.
Neave
,
Margaret E.
Hartley
,
Heidy M.
Mader
,
Daniele
Giordano
,
Robert
Atwood
,
Peter D.
Lee
,
Florian
Heidelbach
,
Mike R.
Burton
Diamond Proposal Number(s):
[16188]
Open Access
Abstract: The majority of basaltic magmas stall in the Earth’s crust as a result of the rheological evolution caused by crystallization during transport. However, the relationships between crystallinity, rheology and eruptibility remain uncertain because it is difficult to observe dynamic magma crystallization in real time. Here, we present in-situ 4D data for crystal growth kinetics and the textural evolution of pyroxene during crystallization of trachybasaltic magmas in high-temperature experiments under water-saturated conditions at crustal pressures. We observe dendritic growth of pyroxene on initially euhedral cores, and a surprisingly rapid increase in crystal fraction and aspect ratio at undercooling ≥30 °C. Rapid dendritic crystallization favours a rheological transition from Newtonian to non-Newtonian behaviour within minutes. We use a numerical model to quantify the impact of rapid dendritic crystallization on basaltic dike propagation, and demonstrate its dramatic effect on magma mobility and eruptibility. Our results provide insights into the processes that control whether intrusions lead to eruption or not.
|
Jun 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Nolwenn
Le Gall
,
Fabio
Arzilli
,
Giuseppe
La Spina
,
Margherita
Polacci
,
Biao
Cai
,
Margaret E.
Hartley
,
Nghia T.
Vo
,
Robert C.
Atwood
,
Danilo
Di Genova
,
Sara
Nonni
,
Edward W.
Llewellin
,
Mike R.
Burton
,
Peter D.
Lee
Diamond Proposal Number(s):
[12392]
Abstract: Crystallisation is a complex process that significantly affects the rheology of magma, and thus the flow dynamics during a volcanic eruption. For example, the evolution of crystal fraction, size and shape has a strong impact on the surface crust formation of a lava flow, and accessing such information is essential for accurate modelling of lava flow dynamics. To investigate the role of crystallisation kinetics on lava flow behaviour, we performed real-time, in situ synchrotron X-ray microtomography, studying the influence of temperature-time paths on the nucleation and growth of clinopyroxene and plagioclase in an oxidised, nominally anhydrous basaltic magma. Crystallisation experiments were performed at atmospheric pressure in air and temperatures from 1250 °C to 1100 °C, using a bespoke high-temperature resistance furnace. Depending on the cooling regime (single step versus continuous), two different crystal phases (either clinopyroxene or plagioclase) were produced, and we quantified their growth from both global and individual 3D texture analyses. The textural evolution of charges suggests that suppression of crystal nucleation is due to changes in the melt composition with increasing undercooling and time. Using existing viscosity models, we inferred the effect of crystals on the viscosity evolution of our crystal-bearing samples to trace changes in rheological behaviour during lava emplacement. We observe that under continuous cooling, both the onsets of the pāhoehoe-‘a‘ā transition and of non-Newtonian behaviour occur within a shorter time frame. With varying both temperature and time, we also either reproduced or approached the clinopyroxene and plagioclase phenocryst abundances and compositions of the Etna lava used as starting material, demonstrating that real-time synchrotron X-ray tomography is an ideal approach to unravel the final solidification history of basaltic lavas. This imaging technology has indeed the potential to provide input into lava flow models and hence our ability to forecast volcanic hazards.
|
Aug 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Katherine J.
Dobson
,
Anja
Allabar
,
Eloise
Bretagne
,
Jason
Coumans
,
Mike
Cassidy
,
Corrado
Cimarelli
,
Rebecca
Coats
,
Thomas
Connolley
,
Loic
Courtois
,
Donald B.
Dingwell
,
Danilo
Di Genova
,
Benjamin
Fernando
,
Julie L.
Fife
,
Frey
Fyfe
,
Stephan
Gehne
,
Thomas
Jones
,
Jackie E.
Kendrick
,
Helen
Kinvig
,
Stephan
Kolzenburg
,
Yan
Lavallee
,
Emma
Liu
,
Edward W.
Llewellin
,
Amber
Madden-Nadeau
,
Kamel
Madi
,
Federica
Marone
,
Cerith
Morgan
,
Julie
Oppenheimer
,
Anna
Ploszajski
,
Gavin
Reid
,
Jenny
Schauroth
,
Christian M.
Schlepütz
,
Catriona
Sellick
,
Jérémie
Vasseur
,
Felix W.
Von Aulock
,
Fabian B.
Wadsworth
,
Sebastian
Wiesmaier
,
Kaz
Wanelik
Diamond Proposal Number(s):
[15898]
Open Access
Abstract: Many of the grand challenges in volcanic and magmatic research are focused on understanding the dynamics of highly heterogeneous systems and the critical conditions that enable magmas to move or eruptions to initiate. From the formation and development of magma reservoirs, through propagation and arrest of magma, to the conditions in the conduit, gas escape, eruption dynamics, and beyond into the environmental impacts of that eruption, we are trying to define how processes occur, their rates and timings, and their causes and consequences. However, we are usually unable to observe the processes directly. Here we give a short synopsis of the new capabilities and highlight the potential insights that in situ observation can provide. We present the XRheo and Pele furnace experimental apparatus and analytical toolkit for the in situ X-ray tomography-based quantification of magmatic microstructural evolution during rheological testing. We present the first 3D data showing the evolving textural heterogeneity within a shearing magma, highlighting the dynamic changes to microstructure that occur from the initiation of shear, and the variability of the microstructural response to that shear as deformation progresses. The particular shear experiments highlighted here focus on the effect of shear on bubble coalescence with a view to shedding light on both magma transport and fragmentation processes. The XRheo system is intended to help us understand the microstructural controls on the complex and non-Newtonian evolution of magma rheology, and is therefore used to elucidate the many mobilization, transport, and eruption phenomena controlled by the rheological evolution of a multi-phase magmatic flows. The detailed, in situ characterization of sample textures presented here therefore represents the opening of a new field for the accurate parameterization of dynamic microstructural control on rheological behavior.
|
Sep 2020
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Margherita
Polacci
,
Fabio
Arzilli
,
Giuseppe
La Spina
,
Nolwenn
Le Gall
,
Rafael
Torres Orozco
,
Margaret
Hartley
,
Danilo
Di Genova
,
Robert
Atwood
,
Ed
Llewellin
,
Richard
Brooker
,
Heidy
Mader
,
Peter
Lee
,
Mike
Burton
Open Access
Abstract: Basaltic volcanism is strongly influenced by magmatic viscosity, which, in turn, is controlled by magma composition, crystallisation, oxygen fugacity and vesiculation. We developed an environmental cell to replicate the pressure and temperature during magma ascent from crustal storage to the surface, while capturing crystallisation using in-situ 4D X-ray computed microtomography. Crystallisation experiments were performed at Diamond Light Source, using monochromatic 53 keV X-rays, a pixel size of 3.2 μm, a sample to detector distance of 2000 mm, 1440 projections per 180 deg, an acquisition time of 0.04 s, and a rotation velocity of 3.125 deg.s-1. The redox conditions were controlled using an oxidised nickel disk for each experiment. Our starting materials were samples made of crystal-free glass cylinders (Ø 3 mm) from the 2001 Etna eruption with 0.9 and 0.8 wt. % water content. In the experiments, samples and crucibles were sealed initially by applying ~10 N loads. All samples were then heated up above glass transition (between 800 °C and 900 °C) in order to allow sample homogenisation while preventing volatiles exsolution. We then pressurised each sample by applying uniaxial loads (between 80 and 380 N), using high-degree alumina pistons, in order to generate enough internal pressure to maintain bubble-free samples when the desired high temperature was reached. Once at the initial high temperature, we began experiments via dropping the temperature to different target isothermal (from 1210 to 1130 °C or 1180 to 1110 °C) and isobaric conditions (8 and 10 MPa, respectively). For the whole duration of the experiments, we were able to observe directly and record pyroxene crystal nucleation and growth. Specifically, we were able to observe pyroxene nucleation on bubbles at small undercooling (∆T) and epitaxial growth of pyroxene at large ∆T. An increase of ∆T (up to 50 °C) can be associated with a decompression of a magma chamber or a decompression during magma ascent in the conduit. As ∆T = 30 - 50 °C can be reached in most of the basaltic volcanic systems on Earth, our results provide a feasible explanation of which mechanisms control nucleation and growth of pyroxene crystals in hydrous basaltic magmas. In addition, epitaxial growth promotes a faster increase of the crystal volume. As a larger crystal content translates into a higher viscosity, our results have important implications for magma rheology, and are extremely important to improve our understanding of magma ascent dynamics during volcanic eruptions, and our capacity to predict eruptions and mitigate volcanic hazards.
|
Mar 2020
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Fabio
Arzilli
,
Giuseppe
La Spina
,
Mike R.
Burton
,
Margherita
Polacci
,
Nolwenn
Le Gall
,
Margaret E.
Hartley
,
Danilo
Di Genova
,
Biao
Cai
,
Nghia T.
Vo
,
Emily C.
Bamber
,
Sara
Nonni
,
Robert
Atwood
,
Edward W.
Llewellin
,
Richard A.
Brooker
,
Heidy M.
Mader
,
Peter D.
Lee
Diamond Proposal Number(s):
[16188]
Abstract: Basaltic eruptions are the most common form of volcanism on Earth and planetary bodies. The low viscosity of basaltic magmas inhibits fragmentation, which favours effusive and lava-fountaining activity, yet highly explosive, hazardous basaltic eruptions occur. The processes that promote fragmentation of basaltic magma remain unclear and are subject to debate. Here we used a numerical conduit model to show that a rapid magma ascent during explosive eruptions produces a large undercooling. In situ experiments revealed that undercooling drives exceptionally rapid (in minutes) crystallization, which induces a step change in viscosity that triggers magma fragmentation. The experimentally produced textures are consistent with basaltic Plinian eruption products. We applied a numerical model to investigate basaltic magma fragmentation over a wide parameter space and found that all basaltic volcanoes have the potential to produce highly explosive eruptions. The critical requirements are initial magma temperatures lower than 1,100 °C to reach a syn-eruptive crystal content of over 30 vol%, and thus a magma viscosity around 105 Pa s, which our results suggest is the minimum viscosity required for the fragmentation of fast ascending basaltic magmas. These temperature, crystal content and viscosity requirements reveal how typically effusive basaltic volcanoes can produce unexpected highly explosive and hazardous eruptions.
|
Oct 2019
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
M.
Polacci
,
F.
Arzilli
,
G.
La Spina
,
N.
Le Gall
,
B.
Cai
,
M. E.
Hartley
,
D.
Di Genova
,
Nghia
Vo
,
S.
Nonni
,
R. C.
Atwood
,
E. W.
Llewellin
,
P. D.
Lee
,
M. R.
Burton
Diamond Proposal Number(s):
[12392, 16188]
Open Access
Abstract: Magma crystallisation is a fundamental process driving eruptions and controlling the style of volcanic activity. Crystal nucleation delay, heterogeneous and homogeneous nucleation and crystal growth are all time-dependent processes, however, there is a paucity of real-time experimental data on crystal nucleation and growth kinetics, particularly at the beginning of crystallisation when conditions are far from equilibrium. Here, we reveal the first in situ 3D time-dependent observations of crystal nucleation and growth kinetics in a natural magma, reproducing the crystallisation occurring in real-time during a lava flow, by combining a bespoke high-temperature environmental cell with fast synchrotron X-ray microtomography. We find that both crystal nucleation and growth occur in pulses, with the first crystallisation wave producing a relatively low volume fraction of crystals and hence negligible influence on magma viscosity. This result explains why some lava flows cover kilometres in a few hours from eruption inception, highlighting the hazard posed by fast-moving lava flows. We use our observations to quantify disequilibrium crystallisation in basaltic magmas using an empirical model. Our results demonstrate the potential of in situ 3D time-dependent experiments and have fundamental implications for the rheological evolution of basaltic lava flows, aiding flow modelling, eruption forecasting and hazard management.
|
May 2018
|
|