I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[36180]
Abstract: The delamination of hydrothermally etched V2CTx has presented challenges, with limited reports of an effective delamination process. X-ray diffraction data indicate that excess lithium and lithium salts in the reaction mixture interact with the multilayered MXene surfaces in the interlayer space, impeding intercalants that would separate the nanosheets. The removal of this salt with a dilute acid solution is the key step to enable the synthesis of a delaminated MXene with a markedly higher yield in comparison to that of traditional HF-etched (and delaminated) V2CTx. Because this yield is substantial, the sample can be centrifuged to produce 20 mL of a concentrated (25 mg mL–1) sample. Due to the removal of excess water and dissolved O2, this concentrated sample shows improved stability toward oxidation and can withstand ambient conditions over the course of a year.
|
Mar 2025
|
|
|
Open Access
Abstract: Multi-walled carbon nanotubes (MWCNTs), synthesized using the microwave plasma-enhanced chemical vapor deposition (MPCVD) technique, have been examined to elucidate their electronic and magnetic structures through near-edge X-ray absorption fine structure (NEXAFS) and X-ray magnetic circular dichroism (XMCD) spectroscopy. NEXAFS analysis at the Fe and Co L-edges reveals the presence of Fe-metal nanoparticles embedded within the CNT lattice, along with divalent Co ions coordinated to the matrix in an octahedral symmetry. Furthermore, the appearance of two distinct NEXAFS peaks between the π* and σ* transitions indicates 1s to sp3 hybridization, attributed to the interaction of Fe and Co2+ ions with the carbon nanotube structure. Additionally, XMCD spectra confirm that MWCNTs exhibit room temperature ferromagnetism, primarily driven by Fe–C and Co–C bonding within the nanotubes. This intrinsic ferromagnetic behavior, along with the high aspect ratio and unique electronic properties of MWCNTs, highlights their promising potential for applications in spintronic storage devices.
|
Mar 2025
|
|
|
Open Access
Abstract: Magnetic tunnel junctions (MTJs), consisting of two ferromagnetic electrodes separated by an insulating layer, have been foundational in spintronics. This study expands the traditional MTJ framework by incorporating an antiferromagnetic electrode alongside a ferromagnetic one to elucidate the interplay between perpendicular magnetic anisotropy (PMA) and tunnel magnetoresistance (TMR). Specifically, we investigate the relationship among spin-orbital magnetic moments, PMA, and TMR in pristine and Ag-irradiated (200 MeV) thin films of CoFe2O4 (40 nm)/MgO (20 nm)/ZnFe2O4 (40 nm). Angle-dependent soft X-ray magnetic circular dichroism (XMCD), together with element-specific hysteresis loops at the Fe L-edge, reveals that both the pristine and swift heavy ion (SHI)-multilayer stacks display magnetic anisotropy, characterized by a decreased XMCD intensity from out-of-plane (perpendicular) to in-plane (parallel) geometry. This reduction in the XMCD intensity correlates with spin polarization, establishing a direct relationship with the TMR of the MTJ. Furthermore, the analysis confirms that TMR decreases as the measurement angle decreases. Therefore, this investigation underscores the pivotal role of spin-orbital magnetic moments in influencing the PMA and TMR properties of CoFe2O4/MgO/ZnFe2O4 MTJs.
|
Mar 2025
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
I09-Surface and Interface Structural Analysis
|
Nickil
Shah
,
Galo J.
Paez Fajardo
,
Hrishit
Banerjee
,
Gaurav C.
Pandey
,
Ashok S.
Menon
,
Muhammad
Ans
,
Veronika
Majherova
,
Gerard
Bree
,
Satish
Bolloju
,
David .
Grinter
,
Pilar
Ferrer
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Melanie
Loveridge
,
Andrew J.
Morris
,
Clare P.
Grey
,
Louis F. J.
Piper
Diamond Proposal Number(s):
[30201, 33459]
Open Access
Abstract: In Ni-rich layered oxide cathodes, cycling above the oxygen-loss threshold voltage (∼4.3 V vs Li+/Li) promotes structural transformations at the cathode surface. These transformations can result in various thermodynamically favorable rocksalt-like (RSL) structures (NiO, NiOx, and/or LiyNizO) that have different Li+ transport properties. Elucidating the precise phase type in the RSL can help determine design strategies to improve Li+ kinetics and identify design rules to suppress capacity fade in Ni-rich cathodes. This study utilizes surface-sensitive X-ray absorption spectroscopy in combination with first-principles simulations and distinguishes the layered oxide spectroscopic features from those of surface-reduced layers of pure NiO and LixNi1–xO. The transport of lithium ions through this oxygen-loss-induced surface-reconstructed layer is studied with operando X-ray diffraction in a pouch cell as a function of cycling aging and constant voltage protocols.
|
Feb 2025
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[36180]
Abstract: MAX phases are a large and growing family of transition metal-based ternary carbides and (carbo)nitrides, that have also attracted significant attention as precursors for a class of two-dimensional materials referred to as MXenes. The ability to partially substitute elements on the M-, A-, and X-sites of the layered crystal structure has expanded MAX phases to over 340 members known to date. They can be exfoliated to form single- and few-layer MXene sheets by removal of the A-element while maintaining the M- and X-elements of the precursor MAX phase. MXenes are extremely interesting materials with properties that are, among other factors, dependent on their chemical composition and offer a wide array of potential applications, for example for energy conversion. Here, we synthesize hitherto unknown solid solution MAX phases, (V1–yMoy)2AlC (y = 0.0–0.5) and exfoliate all compounds with varying V/Mo ratios into the respective MXenes by hydrothermal treatment with in situ-formed hydrofluoric acid. The delaminated MXenes can be utilized for electrocatalytic reactions, here demonstrated for the hydrogen evolution reaction (HER). As the Mo content within the MXenes increases, electrocatalytic activity for HER improves, peaking at an overpotential of 394 mV at 10 mA cm–2 and a Tafel slope of 129 mV dec–1 for (V0.5Mo0.5)2CTx.
|
Jan 2025
|
|
|
Abstract: Soft magnetic ferrites serve as a crucial component in a wide array of sensing and actuating applications across various industries, including consumer electronics, automotive systems, spintronics, and more. These materials also find utility in spintronics, particularly for next-generation magnetic random-access memory (MRAM) due to their excellent inductive properties, which enhance the performance and scalability of spintronic memory devices. This study focuses on fine-tuning soft magnetic ferrites for inductive applications by doping them with Cr ions. By utilizing advanced experimental techniques such as the vibrating sample magnetometer (VSM) for bulk magnetometry and X-ray magnetic circular dichroism (XMCD) alongside X-ray absorption spectroscopy for atomic studies, the research aims to investigate the structural, electronic, and magnetic properties of the nanoferrites. Addition of doping in the soft ferrites observes reduction in the general magnetic parameters, with the only exception being coercivity, which decreases from 381 Oe to 275 Oe as the doping concentration increases from x = 0 to x = 0.02, and then increases to 350 Oe at x = 0.03. Through such precise tuning of the nanoparticles, this study aims to investigate the controllable soft magnetic properties of the nanoferrites, thereby paving the way for fast access times, non-volatility, and low energy consumption, presenting a compelling alternative to conventional memory technologies.
|
Oct 2024
|
|
I09-Surface and Interface Structural Analysis
|
Christopher
Don
,
Thomas P.
Shalvey
,
Daniya A.
Sindi
,
Bradley
Lewis
,
Jack E. N.
Swallow
,
Leon
Bowen
,
Daniel F.
Fernandes
,
Tomas
Kubart
,
Deepnarayan
Biswas
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Jonathan D.
Major
Diamond Proposal Number(s):
[34642]
Open Access
Abstract: The evolution of Sb2Se3 heterojunction devices away from CdS electron transport layers (ETL) to wide bandgap metal oxide alternatives is a critical target in the development of this emerging photovoltaic material. Metal oxide ETL/Sb2Se3 device performance has historically been limited by relatively low fill factors, despite offering clear advantages with regards to photocurrent collection. In this study, TiO2 ETLs are fabricated via direct current reactive sputtering and tested in complete Sb2Se3 devices. A strong correlation between TiO2 ETL processing conditions and the Sb2Se3 solar cell device response under forward bias conditions is observed and optimized. Numerical device models support experimental evidence of a spike-like conduction band offset, which can be mediated, provided a sufficiently high conductivity and low interfacial defect density can be achieved in the TiO2 ETL. Ultimately, a SnO2:F/TiO2/Sb2Se3/P3HT/Au device with the reactively sputtered TiO2 ETL delivers an 8.12% power conversion efficiency (η), the highest TiO2/Sb2Se3 device reported to-date. This is achieved by a substantial reduction in series resistance, driven by improved crystallinity of the reactively sputtered anatase-TiO2 ETL, whilst maintaining almost maximum current collection for this device architecture.
|
Jun 2024
|
|
I09-Surface and Interface Structural Analysis
|
Niels
Kubitza
,
Isabel
Huck
,
Hanna
Pazniak
,
Curran
Kalha
,
David
Koch
,
Bo
Zhao
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Aysha A.
Riaz
,
Wolfgang
Donner
,
Hongbin
Zhang
,
Benjamin
Moss
,
Ulf
Wiedwald
,
Anna
Regoutz
,
Christina S.
Birkel
Diamond Proposal Number(s):
[29451]
Abstract: MAX phases are almost exclusively known as carbides, while nitrides and carbonitrides form a significantly underrepresented subgroup even though they have been shown to possess enhanced properties in comparison to their carbide counterparts. One example is the nitride phase Cr2GaN which exhibits a spin density wave magnetic state below T = 170 K, while the metallic carbide phase Cr2GaC follows the MAX phase-typical Pauli-paramagnetic behavior. To investigate the influence on the materials/functional properties of mixing carbon and nitrogen on the X-site, this study aims to synthesize and comprehensively characterize the hitherto unknown carbonitride phase Cr2GaC1-xNx and compare it to the parent phases. Due to the challenging synthesis of (carbo)nitrides in general, a sol-gel-assisted approach is applied which was recently developed by our group. This process was further improved by using time-efficient microwave heating, leading to a highly phase pure product. STEM-EDX analyses reveal a C/N ratio of roughly 2:1. Temperature-dependent XRD measurements confirm the literature-known magnetic phase transition of the parent nitride phase Cr2GaN, while the incorporation of carbon suppresses the latter. Nonetheless, magnetic characterization of the phases reveals that the magnetic behavior can be specifically influenced by changing the composition of the X site, resulting in an increase of the susceptibility by increasing the nitrogen amount. Overall, these findings further substantiate the big potential in nitrogen-containing MAX phases, which will also serve as starting materials for future doping studies, i.e. on the M- and A-site, and as precursors for novel 2D MXenes.
|
Apr 2024
|
|
I09-Surface and Interface Structural Analysis
|
Curran
Kalha
,
Laura E.
Ratcliff
,
Giorgio
Colombi
,
Christoph
Schlueter
,
Bernard
Dam
,
Andrei
Gloskovskii
,
Tien-Lin
Lee
,
Pardeep K.
Thakur
,
Prajna
Bhatt
,
Yujiang
Zhu
,
Jürg
Osterwalder
,
Francesco
Offi
,
Giancarlo
Panaccione
,
Anna
Regoutz
Diamond Proposal Number(s):
[29451]
Open Access
Abstract: Metal hydrides are potential candidates for applications in hydrogen-related technologies, such as energy storage, hydrogen compression, and hydrogen sensing, to name just a few. However, understanding the electronic structure and chemical environment of hydrogen within them remains a key challenge. This work presents a new analytical pathway to explore these aspects in technologically relevant systems using hard x-ray photoelectron spectroscopy (HAXPES) on thin films of two prototypical metal dihydrides:
YH
2
−
δ
and
Ti
H
2
−
δ
. By taking advantage of the tunability of synchrotron radiation, a nondestructive depth profile of the chemical states is obtained using core-level spectra. Combining experimental valence-band (VB) spectra collected at varying photon energies with theoretical insights from density functional theory (DFT) calculations, a description of the bonding nature and the role of
d
versus
s
p
contributions to states near the Fermi energy are provided. Moreover, a reliable determination of the enthalpy of formation is proposed by using experimental values of the energy position of metal
s
-band features close to the Fermi energy in the HAXPES VB spectra.
|
Nov 2023
|
|
I09-Surface and Interface Structural Analysis
|
Galo J.
Paez Fajardo
,
Eleni
Fiamegkou
,
James A.
Gott
,
Heng
Wang
,
Israel
Temprano
,
Ieuan D.
Seymour
,
Matthew J. W.
Ogley
,
Ashok S.
Menon
,
Ifan E. L.
Stephens
,
Muhammad
Ans
,
Tien-Lin
Lee
,
Pardeep K.
Thakur
,
Wesley M.
Dose
,
Michaël F. L.
De Volder
,
Clare P.
Grey
,
Louis F. J.
Piper
Diamond Proposal Number(s):
[30201]
Open Access
Abstract: Oxygen loss at high voltages in Ni-rich NMC//graphite Li-ion batteries promotes degradation, but increasing evidence from full cells reveals that the depth of discharge choice can further accelerate aging, i.e., synergistic degradation. In this Letter, we employ cycling protocols to examine the origin of the synergistic degradation for single crystal Ni-rich NMC//graphite pouch cells. In regimes where oxygen loss is not promoted (V < 4.3 V), a lower cutoff voltage does not affect capacity retention (after 100 cycles), despite significant graphite expansion occurring. In contrast, when NMC surface oxygen loss is induced (V > 4.3 V), deeper depth of discharge leads to pronounced faster aging. Using a combination of post-mortem analysis and density functional theory, we present a mechanistic description of surface phase densification and evolution as a function of voltage and cycling. The detrimental impact of this mechanism on lithium-ion kinetics is used to explain the observed cycling results.
|
Nov 2023
|
|