I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[18786, 25166]
Open Access
Abstract: Methylammonium (MA+) lead halide perovskites (MAPbX3) have been widely investigated for photovoltaic applications, with the addition of Cs improving structural and thermal stability. This study reports the complete A site miscibility of Cs+ and MA+ cations in the lead chloride and lead bromide perovskites with nominal stoichiometric formulae (CsxMA1−x)Pb(Cl/Br)3 (x = 0, 0.13, 0.25, 0.37, 0.50, 0.63, 0.75, 0.87, 1). These suites of materials were synthesized mechanochemically as a simple, cost-effective synthesis technique to produce highly ordered, single phase particles. In contrast to previous studies using conventional synthetic routes that have reported significant solubility gaps, this solvent-free approach induces complete miscibility within the dual cation Cs+/MA+ system, with the resultant structures exhibiting high short-range and long-range atomic ordering across the entire compositional range that are devoid of solvent inclusions and disorder. The subtle structural evolution from cubic to orthorhombic symmetry reflecting PbX6 octahedral tilting was studied using complementary high resolution TEM, powder XRD, multinuclear 133Cs/207Pb/1H MAS NMR, DSC, XPS and UV/vis approaches. The phase purity and exceptional structural order were reflected in the very high resolution HRTEM images presented from particles with crystallite sizes in the ∼80–170 nm range, and the stability and long lifetimes of the Br series (10–20 min) and the Cl series (∼30 s–1 min) under the 200 kV/146 μA e− beam. Rietveld refinements associated with the room temperature PXRD study demonstrated that each system converged towards single phase compositions that were very close to the intended target stoichiometries, thus indicating the complete miscibility within these dual cation Cs+/MA+ solid solution systems. The multinuclear MAS NMR data showed a distinct sensitivity to the changing solid solution compositions across the MAPbX3–CsPbX3 partition. In particular, the 133Cs shifts demonstrated a sensitivity to the cubic–orthorhombic phase transition while the 133Cs T1s exhibited a pronounced sensitivity to the variable Cs+ cation mobility across the compositional range. Variable temperature PXRD studies facilitated the production of phase diagrams mapping the Cs+/MA+ compositional space for the (CsxMA1−x)PbCl3 and (CsxMA1−x)PbBr3 solid solution series, while Tauc plots of the UV/vis data exhibited reducing bandgaps with increasing MA+ incorporation through ranges of cubic phases where octahedral tilting was absent.
|
Jul 2022
|
|
I19-Small Molecule Single Crystal Diffraction
|
John D.
Wallis
,
Gregory J
Rees
,
Mateusz B.
Pitak
,
Alberth
Lari
,
Stephen P.
Day
,
Jonathan R.
Yates
,
Peter
Gierth
,
Kristian
Barnsley
,
Mark E.
Smith
,
Simon J.
Coles
,
John V.
Hanna
Diamond Proposal Number(s):
[8521]
Open Access
Abstract: A combination of charge density studies and solid state nuclear magnetic resonance (NMR) 1 J NC coupling measurements supported by periodic density functional theory (DFT) calculations is used to characterise the transition from an n - π * interaction to bond formation between a nucleophilic nitrogen atom and an electrophilic sp 2 carbon atom in a series of crystalline peri-substituted naphthalenes. As the N···C distance reduces there is a sharp decrease in the Laplacian derived from increasing charge density between the two groups at ca. N···C:1.8 Å, with the periodic DFT calculations predicting, and heteronuclear spin-echo NMR measurements confirming, the 1 J NC couplings of ~2-5 Hz for long C-N bonds (1.60-1.65 Å), and 1 J NC couplings of <1 Hz for N···C > 2.1 Å.
|
Aug 2021
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[15444]
Abstract: Inorganic/organic hybrids have co-networks of inorganic and organic components, with the aim of obtaining synergy of the properties of those components. Here, a silica-gelatin sol-gel hybrid “ink” was directly 3D printed to produce 3D grid-like scaffolds, using a coupling agent, 3-glycidyloxypropyl)trimethoxysilane (GPTMS), to form covalent bonds between the silicate and gelatin co-networks. Scaffolds were printed with 1 mm strut separation, but the drying method affected the final architecture and properties. Freeze drying produced <40 μm struts and large ~700 μm channels. Critical point drying enabled strut consolidation and optimal mechanical properties, with ~160 μm struts and ~200 μm channels, which improved mechanical properties. This architecture was critical to cellular response: when chondrocytes were seeded on the scaffolds with 200 μm wide pore channels in vitro, collagen Type II matrix was preferentially produced (negligible amount of Type I or X were observed), indicative of hyaline-like cartilaginous matrix formation, but when pore channels were 700 μm wide, Type I collagen was prevalent. This was supported by Sox9 and Aggrecan expression. The scaffolds have potential for regeneration of articular cartilage regeneration, particularly in sports medicine cases.
|
Feb 2021
|
|
I11-High Resolution Powder Diffraction
I15-1-X-ray Pair Distribution Function (XPDF)
|
Tianyi
Chen
,
Ieuan
Ellis
,
Thomas
Hooper
,
Emanuela
Liberti
,
Lin
Ye
,
Tsz Woon Benedict
Lo
,
Colum
O'Leary
,
Alexandra A.
Sheader
,
Gerardo T.
Martinez
,
Lewys
Jones
,
Ping-Luen
Ho
,
Pu
Zhao
,
James
Cookson
,
Peter T
Bishop
,
Philip A.
Chater
,
John V.
Hanna
,
Peter D.
Nellist
,
Shik Chi Edman
Tsang
Diamond Proposal Number(s):
[15452]
Abstract: It is well established that the inclusion of small atomic species such as boron (B) in powder metal catalysts can subtly modify catalytic properties, and the associated changes in the metal lattice implies that the B atoms are located in the interstitial sites. However, there is no compelling evidence for the occurrence of interstitial B atoms, and there is a concomitant lack of detailed structural information describing the nature of this occupancy and its effects on the metal host. In this work, we use an innovative combination of high-resolution 11B magic-angle-spinning (MAS) and 105Pd static solid state NMR nuclear magnetic resonance (NMR), synchrotron X-ray diffraction (SXRD), in-situ X-ray pair distribution function (XPDF), scanning transmission electron microscopy-annular dark field imaging (STEM-ADF), electron ptychography and electron energy loss spectroscopy (EELS) to investigate the B atom positions, properties and structural modifications to the palladium lattice of an industrial type interstitial boron doped palladium nanoparticle catalyst system (Pd-intB/C NPs). In this study we report that upon B incorporation into the Pd lattice, the overall face centered cubic (FCC) lattice is maintained, however short range disorder is introduced. The 105Pd static solid-state NMR illustrates how different types (and levels) of structural strain and disorder are introduced in the nanoparticle history. These structural distortions can lead to the appearance of small amounts of local hexagonal close packed (HCP) structured material in localized regions. The short range lattice tailoring of the Pd framework to accommodate interstitial B dopants in the octahedral sites of the distorted FCC structure can be imaged by electron ptychography. This study describes new toolsets that enables the characterization of industrial metal nanocatalysts across length scales from macro-analysis to micro-analysis, which gives important guidance to structure-activity relationship of the system.
|
Nov 2019
|
|
B18-Core EXAFS
I22-Small angle scattering & Diffraction
|
Elizabeth
Raine
,
Adam
Clark
,
Glen
Smales
,
Andrew
Smith
,
Diego
Gianolio
,
Tong
Li
,
Jianwei
Zheng
,
Benjamin
Griffith
,
Timothy I.
Hyde
,
Mark
Feaviour
,
Paul
Collier
,
John V.
Hanna
,
Gopinathan
Sankar
,
Shik Chi Edman
Tsang
Diamond Proposal Number(s):
[16316, 16583]
Abstract: The strong directing effects and difficulties in the removal of organic based surfactants makes the templated synthesis of nanoparticles in solid porous structures of defined molecular sizes such as SBA-15, without the use of surfactants, considerably attractive. However, the effects of their internal surface structures, adsorption affinities and lattice mis-match on the particle morphology grown therein have not been fully appreciated. Here, we report the internal surface of the silica preferentially hosts isolated tetrahedrally coordinated oxidic Zn species on the molecular walls of the SBA-15 channels from wet impregnated Zn2+ and Pt2+ species. This leads to less thermodynamic stable but kinetic controlled configuration of atomic zinc deposition on core platinum nanoparticles with unique confined lattice changes and surface properties to both host and guest structures at the interface upon reduction of the composite. This method for the formation templated nanoparticles may generate interests to form new tunable materials as dehydrogenation catalysts.
|
Nov 2018
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[17941]
Abstract: The ability to clearly relate local structure to function is desirable for many catalytically relevant Pd-containing systems. This report represents the first direct 105Pd solid state NMR measurements of diamagnetic inorganic (K2Pd(IV)Cl6, (NH4)2Pd(IV)Cl6 and K2Pd(IV)Br6) complexes, and micron- and nano-sized Pd metal particles at room temperature, thereby introducing effective 105Pd chemical shift and Knight shift ranges in the solid state. The very large 105Pd quadrupole moment (Q) makes the quadrupole parameters (CQ, ηQ) extremely sensitive to small structural distortions. Despite the well-defined high symmetry octahedral positions describing the immediate Pd coordination environment, 105Pd NMR measurements can detect longer range disorder and anisotropic motion in the interstitial positions. The approach adopted here combines high resolution X-ray pair distribution function (PDF) analyses with 105Pd, 39K and 35Cl MAS NMR, and shows solid state NMR to be a very sensitive probe of short range structural perturbations. Solid state 105Pd NMR observations of ∼44–149 μm Pd sponge, ∼20–150 nm Pd black nanoparticles, highly monodisperse 16 ± 3 nm PVP-stabilised Pd nanoparticles, and highly polydisperse ∼2–1100 nm biomineralized Pd nanoparticles (bio-Pd) on pyrolysed amorphous carbon detect physical differences between these systems based on relative bulk:surface ratios and monodispersity/size homogeneity. This introduces the possibility of utilizing solid state NMR to help elucidate the structure–function properties of commercial Pd-based catalyst systems.
|
Oct 2018
|
|
|
Danielle
Laurencin
,
François
Ribot
,
Christel
Gervais
,
Adrian J.
Wright
,
Annabelle R.
Baker
,
Lionel
Campayo
,
John V.
Hanna
,
Dinu
Iuga
,
Mark E.
Smith
,
Jean-Marie
Nedelec
,
Guillaume
Renaudin
,
Christian
Bonhomme
Abstract: 87Sr, 127I and 119Sn wideline NMR spectroscopy was successfully applied to inorganic and hybrid materials: (i) Sr derivatives of medicinal interest (Sr-malonate, Sr-pyrophosphates, mixed Ca,Sr-fluoroapatites); (ii) apatitic structures acting as host matrices for iodine; and (iii) Sn-derived oxo-clusters which can be used as inorganic nanobuilding blocks. The BRAIN (BRoadband Adiabatic INversion) CP (Cross Polarization) approach (by Schurko et al.) was applied to a non integer quadrupolar nucleus (87Sr, I=9/2). The sequence was used in combination with WURST (Wideband Uniform-Rate Smooth-Truncation) QCPMG (Quadrupolar Carr-Purcell Meiboom-Gill) for optimal sensitivity. We showed that 127I WURST QCPMG experiments were sufficiently sensitive to allow rapid characterization of the incorporation of iodide (I−) anions in lead vanadate/phosphate apatites, and that 127I acted as a sensitive probe for the description of local disorder. 1H/19F → 119Sn BRAIN CP was successfully applied to the detailed characterization of tin oxo-clusters, using 1H and 19F as spin baths. We demonstrated that BRAIN CP can be effectively used as a tool of spectral editing leading to the estimation of spatial proximities between 119Sn and 1H/19F nuclei.
|
Sep 2016
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[9866]
Open Access
Abstract: Inorganic/organic sol-gel hybrids have nanoscale co-networks of organic and inorganic components that give them the unique potential of tailored mechanical properties and controlled biodegradation in tissue engineering applications. Here, silica/chitosan hybrid scaffolds with oriented structures were fabricated through the sol-gel method with a unidirectional freeze casting process. 3-glycidoxypropyl trimethoxysilane (GPTMS) was used to obtain covalent inorganic/organic coupling. Process variables were investigated such as cooling rate, GPTMS and inorganic content, which can be used to tailor the mechanical properties and hybrid chemical coupling. Structural characterization and dissolution tests confirmed the covalent cross-linking of the chitosan and the silica network in hybrids. The scaffolds had a directional lamellar structure along the freezing direction and a cellular morphology perpendicular to the freezing direction. Compression testing showed that the scaffolds with 60 wt % organic were flexible and elastomeric perpendicular to the freezing direction whilst behaving in an elastic-brittle fashion parallel to the freezing direction. The compressive strengths are about one order of magnitude higher in the latter direction reaching values of the order of 160 kPa. This behaviour provides potential for clinicians to be able to squeeze the materials to fit tissue defect sites while providing some mechanical support from the other direction.
|
Aug 2015
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[8521]
Open Access
Abstract: X-ray crystallography and solid-state NMR measurements show that protonation of a series of 1-dimethylaminonaphthalene-8-ketones leads either to O protonation with formation of a long NC bond (1.6371.669 Å) between peri groups, or to N protonation and formation of a hydrogen bond to the π surface of the carbonyl group, the latter occurring for the larger ketone groups (C([double bond, length as m-dash]O)R, R = t-butyl and phenyl). Solid state 15N MAS NMR studies clearly differentiate the two series, with the former yielding significantly more deshielded resonances. This is accurately corroborated by DFT calculation of the relevant chemical shift parameters. In the parent ketones X-ray crystallography shows that the nitrogen lone pair is directed towards the carbonyl group in all cases.
|
Jul 2014
|
|
I18-Microfocus Spectroscopy
|
Abstract: Melt quenched silicate glasses containing calcium, phosphorus and alkali metals have the ability to promote bone regeneration and to fuse to living bone. Of these glasses 45S5 Bioglass® is the most widely used being sold in over 35 countries as a bone graft product for medical and dental applications; particulate 45S5 is also incorporated into toothpastes to help remineralize the surface of teeth. Recently it has been suggested that adding titanium dioxide can increase the bioactivity of these materials. This work investigates the structural consequences of incorporating 4 mol% TiO2 into Bioglass® using isotopic substitution (of the Ti) applied to neutron diffraction and X-ray Absorption Near Edge Structure (XANES). We present the first isotopic substitution data applied to melt quench derived Bioglass or its derivatives. Results show that titanium is on average surrounded by 5.2(1) nearest neighbor oxygen atoms. This implies an upper limit of 40% four-fold coordinated titanium and shows that the network connectivity is reduced from 2.11 to 1.97 for small quantities of titanium. Titanium XANES micro-fluorescence confirms the titanium environment is homogenous on the micron length scale within these glasses. Solid state magic angle spinning (MAS) NMR confirms the network connectivity model proposed. Furthermore, the results show the intermediate range order containing Na–O, Ca–O, O–P–O and O–Si–O correlations are unaffected by the addition of small quantities of TiO2 into these systems.
|
Oct 2012
|
|