B22-Multimode InfraRed imaging And Microspectroscopy
I19-Small Molecule Single Crystal Diffraction
|
Weiyao
Li
,
Jiangnan
Li
,
Thien D.
Duong
,
Sergey A.
Sapchenko
,
Xue
Han
,
Jack D.
Humby
,
George F. S.
Whitehead
,
Inigo J.
Vitórica-Yrezábal
,
Ivan
Da Silva
,
Pascal
Manuel
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[28479, 23480]
Open Access
Abstract: The development of efficient sorbent materials for sulfur dioxide (SO2) is of key industrial interest. However, due to the corrosive nature of SO2, conventional porous materials often exhibit poor reversibility and limited uptake toward SO2 sorption. Here, we report high adsorption of SO2 in a series of Cu(II)-carboxylate-based metal–organic framework materials. We describe the impact of ligand functionalization and open metal sites on the uptake and reversibility of SO2 adsorption. Specifically, MFM-101 and MFM-190(F) show fully reversible SO2 adsorption with remarkable capacities of 18.7 and 18.3 mmol g–1, respectively, at 298 K and 1 bar; the former represents the highest reversible uptake of SO2 under ambient conditions among all porous solids reported to date. In situ neutron powder diffraction and synchrotron infrared microspectroscopy enable the direct visualization of binding domains of adsorbed SO2 molecules as well as host–guest binding dynamics. We have found that the combination of open Cu(II) sites and ligand functionalization, together with the size and geometry of metal–ligand cages, plays an integral role in the enhancement of SO2 binding.
|
Jul 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Jin
Chen
,
Qingqing
Mei
,
Yinlin
Chen
,
Christopher
Marsh
,
Bing
An
,
Xue
Han
,
Ian P.
Silverwood
,
Ming
Li
,
Yongqiang
Cheng
,
Meng
He
,
Xi
Chen
,
Weiyao
Li
,
Meredydd
Kippax-Jones
,
Danielle
Crawshaw
,
Mark D.
Frogley
,
Sarah J.
Day
,
Victoria
García-Sakai
,
Pascal
Manuel
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[29649]
Open Access
Abstract: The development of materials showing rapid proton conduction with a low activation energy and stable performance over a wide temperature range is an important and challenging line of research. Here, we report confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO4(H3O)2, which exhibits a record-low activation energy of 0.04 eV, resulting in stable proton conductivity between 25 and 80 °C of >10–2 S cm–1. In situ synchrotron X-ray powder diffraction (SXPD), neutron powder diffraction (NPD), quasielastic neutron scattering (QENS), and molecular dynamics (MD) simulation reveal the pathways of proton transport and the molecular mechanism of proton diffusion within the pores. Confined sulfuric acid species together with adsorbed water molecules play a critical role in promoting the proton transfer through this robust network to afford a material in which proton conductivity is almost temperature-independent.
|
Jul 2022
|
|
|
Open Access
Abstract: The purification of light olefins is one of the most important chemical separations globally and consumes large amounts of energy. Porous materials have the capability to improve the efficiency of this process by acting as solid, regenerable adsorbents. However, to develop translational systems, the underlying mechanisms of adsorption in porous materials must be fully understood. Herein, we report the adsorption and dynamic separation of C2 and C3 hydrocarbons in the metal–organic framework MFM-300(In), which exhibits excellent performance in the separation of mixtures of ethane/ethylene and propyne/propylene. Unusually selective adsorption of ethane over ethylene at low pressure is observed, resulting in selective retention of ethane from a mixture of ethylene/ethane, thus demonstrating its potential for a one-step purification of ethylene (purity > 99.9%). In situ neutron powder diffraction and inelastic neutron scattering reveal the preferred adsorption domains and host–guest binding dynamics of adsorption of C2 and C3 hydrocarbons in MFM-300(In).
|
Jun 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Bing
An
,
Zhe
Li
,
Zi
Wang
,
Xiangdi
Zeng
,
Xue
Han
,
Yongqiang
Chen
,
Alena M.
Sheveleva
,
Zhongyue
Zhang
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Mark D.
Frogley
,
Anibal J.
Ramirez-Cuesta
,
Louise S.
Natrajan
,
Cheng
Wang
,
Wenbin
Li
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[23782]
Abstract: Natural gas, consisting mainly of methane (CH4), has a relatively low energy density at ambient conditions (~36 kJ l−1). Partial oxidation of CH4 to methanol (CH3OH) lifts the energy density to ~17 MJ l−1 and drives the production of numerous chemicals. In nature, this is achieved by methane monooxygenase with di-iron sites, which is extremely challenging to mimic in artificial systems due to the high dissociation energy of the C–H bond in CH4 (439 kJ mol−1) and facile over-oxidation of CH3OH to CO and CO2. Here we report the direct photo-oxidation of CH4 over mono-iron hydroxyl sites immobilized within a metal–organic framework, PMOF-RuFe(OH). Under ambient and flow conditions in the presence of H2O and O2, CH4 is converted to CH3OH with 100% selectivity and a time yield of 8.81 ± 0.34 mmol gcat−1 h−1 (versus 5.05 mmol gcat−1 h−1 for methane monooxygenase). By using operando spectroscopic and modelling techniques, we find that confined mono-iron hydroxyl sites bind CH4 by forming an [Fe–OH···CH4] intermediate, thus lowering the barrier for C–H bond activation. The confinement of mono-iron hydroxyl sites in a porous matrix demonstrates a strategy for C–H bond activation in CH4 to drive the direct photosynthesis of CH3OH.
|
Jun 2022
|
|
I11-High Resolution Powder Diffraction
|
Shanshan
Liu
,
Yinlin
Chen
,
Bin
Yue
,
Chang
Wang
,
Bin
Qin
,
Yuchao
Chai
,
Guangjun
Wu
,
Jiangnan
Li
,
Xue
Han
,
Ivan
Da Silva
,
Pascal
Manuel
,
Sarah J.
Day
,
Naijia
Guan
,
Stephen P.
Thompson
,
Sihai
Yang
,
Landong
Li
Diamond Proposal Number(s):
[29649]
Abstract: The development of cost-effective sorbents for direct capture of trace CO 2 (<1%) from the atmosphere is an important and challenging task. Natural or commercial zeolites are promising sorbents, but their performance in adsorption of trace CO 2 has been poorly explored to date. Herein, we report a systematic study on capture of trace CO 2 by commercial faujasite zeolites, where we found that the extra-framework cations played a key role on their performance. Under dry conditions, Ba-X displays high dynamic uptake of 1.79 and 0.69 mmol g -1 at CO 2 concentrations of 10000 and 1000 ppm, respectively, and shows excellent recyclability in the temperature-swing adsorption processes. K-X exhibits perfect moisture resistance, and >95 % dry CO 2 uptake can be preserved under relative humidity of 74%. In situ solid-state NMR spectroscopy, synchrotron X-ray diffraction and neutron diffraction reveal two binding sites for CO 2 in these zeolites, namely the basic framework oxygen atoms and the divalent alkaline earth metal ions. This study unlocks the potential of low-cost natural zeolites for applications in direct air capture.
|
Jun 2022
|
|
B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
|
Yujie
Ma
,
Wanpeng
Lu
,
Xue
Han
,
Yinlin
Chen
,
Ivan
Da Silva
,
Daniel
Lee
,
Alena M.
Sheveleva
,
Zi
Wang
,
Jiangnan
Li
,
Weiyao
Li
,
Mengtian
Fan
,
Shaojun
Xu
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Yongqiang
Cheng
,
Svemir
Rudic
,
Pascal
Manuel
,
Mark D.
Frogley
,
Anibal J.
Ramirez-Cuesta
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[19850]
Open Access
Abstract: The presence of active sites in metal–organic framework (MOF) materials can control and affect their performance significantly in adsorption and catalysis. However, revealing the interactions between the substrate and active sites in MOFs at atomic precision remains a challenging task. Here, we report the direct observation of binding of NH3 in a series of UiO-66 materials containing atomically dispersed defects and open Cu(I) and Cu(II) sites. While all MOFs in this series exhibit similar surface areas (1111–1135 m2 g–1), decoration of the −OH site in UiO-66-defect with Cu(II) results in a 43% enhancement of the isothermal uptake of NH3 at 273 K and 1.0 bar from 11.8 in UiO-66-defect to 16.9 mmol g–1 in UiO-66-CuII. A 100% enhancement of dynamic adsorption of NH3 at a concentration level of 630 ppm from 2.07 mmol g–1 in UiO-66-defect to 4.15 mmol g–1 in UiO-66-CuII at 298 K is observed. In situ neutron powder diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, and infrared spectroscopies, coupled with modeling reveal that the enhanced NH3 uptake in UiO-66-CuII originates from a {Cu(II)···NH3} interaction, with a reversible change in geometry at Cu(II) from near-linear to trigonal coordination. This work represents the first example of structural elucidation of NH3 binding in MOFs containing open metal sites and will inform the design of new efficient MOF sorbents by targeted control of active sites for NH3 capture and storage.
|
May 2022
|
|
I11-High Resolution Powder Diffraction
|
Shanshan
Liu
,
Yinlin
Chen
,
Bin
Yue
,
Yuanxin
Nie
,
Yuchao
Chai
,
Guangjun
Wu
,
Jiangnan
Li
,
Xue
Han
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Naijia
Guan
,
Sihai
Yang
,
Landong
Li
Diamond Proposal Number(s):
[31365]
Abstract: Adsorptive separation of light hydrocarbons by porous solids provides an energy-efficient alternative to state-of-the-art cryogenic distillation. However, an optimal balance between the cost, performance and stability of the sorbent material is yet to be achieved for industrial applications. Here, we report the efficient separation of C2 and C3 hydrocarbons by a faujasite zeolite (Na-X, Si/Al=1.23). A tandem configuration of two fixed-beds packed with Na-X affords complete dynamic separation of the ternary mixture of C2H2/C2H4/C2H6 (1/49.5/49.5; v/v/v) under ambient conditions. Pressure-swing desorption on the latter fixed-bed gives ethylene (>99.50%, 1.80 mmol g-1) and ethane (>99.99%, 1.41 mmol g-1). In situ synchrotron X-ray powder diffraction revealed the binding sites for C2H2 and C2H4 in Na-X. This study highlights the potential application of commercial zeolites for challenging industrial separations.
|
May 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Lixia
Guo
,
Xue
Han
,
Yujie
Ma
,
Jiangnan
Li
,
Wanpeng
Lu
,
Weiyao
Li
,
Daniel
Lee
,
Ivan
Da Silva
,
Yongqiang
Cheng
,
Svemir
Rudic
,
Pascal
Manuel
,
Mark D.
Frogley
,
Anibal Javier
Ramirez-Cuesta
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: To understand the exceptional adsorption of ammonia (NH3) in MFM-300(Sc) (19.5 mmol g−1 at 273 K and 1 bar without hysteresis), we report a systematic investigation of the mechanism of adsorption by a combination of in situ neutron powder diffraction, inelastic neutron scattering, synchrotron infrared microspectroscopy, and solid-state 45Sc NMR spectroscopy. These complementary techniques reveal the formation of reversible host-guest supramolecular interactions, which explains directly the observed excellent reversibility of this material over 90 adsorption-desorption cycles.
|
Apr 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Sihai
Yang
,
Zongsu
Han
,
Jiangnan
Li
,
Wanpeng
Lu
,
Kunyun
Wang
,
Yinlin
Chen
,
Xiaoping
Zhang
,
Longfei
Lin
,
Xue
Han
,
Simon
Teat
,
Mark
Frogley
,
Wei
Shi
,
Peng
Cheng
Diamond Proposal Number(s):
[23782]
Abstract: Air pollutions by SO2 and NO2 have caused significant risks on the environment and human health. Understanding the mechanism of active sites within capture materials is of fundamental importance to the development of new clean-up technologies. Here we report the crystallographic observation of reversible coordinative binding of SO2 and NO2 on open Ni(II) sites in a metal-organic framework (NKU-100) incorporating an unprecedented {Ni 12 }-wheel, which exhibits six open Ni(II) sites on desolvation. Immobilised gas molecules are further stabilised by cooperative host-guest interactions comprised of hydrogen bonds, π ··· π interactions and dipole interactions. At 298 K and 1.0 bar, NKU-100 shows adsorption uptakes of 6.21 and 5.80 mmol g -1 for SO2 and NO2 , respectively. Dynamic breakthrough experiments have confirmed the selective retention of SO2 and NO2 at low concentrations under dry conditions. This work will inspire the future design of efficient sorbents for the capture of SO2 and NO2 .
|
Nov 2021
|
|
I11-High Resolution Powder Diffraction
|
Tian
Luo
,
Lili
Li
,
Yinlin
Chen
,
Jie
An
,
Chengcheng
Liu
,
Zheng
Yan
,
Joseph H.
Carter
,
Xue
Han
,
Alena M.
Sheveleva
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Chiu C.
Tang
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[15972]
Open Access
Abstract: Construction of C-C bonds via reductive coupling of aldehydes and ketones is hindered by the highly negative reduction potential of these carbonyl substrates, particularly ketones, and this renders the formation of ketyl radicals extremely endergonic. Here, we report the efficient activation of carbonyl compounds by the formation of specific host-guest interactions in a hydroxyl-decorated porous photocatalyst. MFM-300(Cr) exhibits a band gap of 1.75 eV and shows excellent catalytic activity and stability towards the photoreductive coupling of 30 different aldehydes and ketones to the corresponding 1,2-diols at room temperature. Synchrotron X-ray diffraction and electron paramagnetic resonance spectroscopy confirm the generation of ketyl radicals via confinement within MFM-300(Cr). This protocol removes simultaneously the need for a precious metal-based photocatalyst or for amine-based sacrificial agents for the photochemical synthesis.
|
Jun 2021
|
|