B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Boya
Tang
,
David
Brooks
,
Meng
He
,
Yinlin
Chen
,
Zhaozhao
Hu
,
Xue
Han
,
Jiangnan
Li
,
Siyu
Zhao
,
Jiarui
Fan
,
Yukun
Ye
,
Ivan
Da Silva
,
Cheng
Li
,
Zi
Wang
,
Lutong
Shan
,
Bing
Han
,
Weiyao
Li
,
Daniil
Polyukhov
,
Bing
An
,
Catherine
Dejoie
,
Martin
Wilding
,
Shaojun
Xu
,
Meredydd
Kippax-Jones
,
Zhaodong
Zhu
,
Yujie
Ma
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Mark D.
Frogley
,
Louise S.
Natrajan
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[37900, 37887, 36450]
Abstract: Photocatalytic synthesis of hydrogen peroxide (H2O2) from oxygen (O2) is a challenging process. Metal–organic framework (MOF) materials are emerging photocatalysts with potential tunable light absorption properties. Herein, we report a rhenium (Re) modified Zr-based MOF, Re10-MFM-67, in which active Re sites are incorporated into MFM-67 by partial replacement of 9,9′-bianthracene-10,10′-dicarboxylic acid (H2L1) with a [(H2L2)ReI(CO)3Cl] (H2L2 = 2,2′-bipyridine-5,5′-dicarboxylic acid) moiety. Re10-MFM-67 (10 refers to the molar percentage content of Re complex within the material) exhibits broadband light absorption with an exceptional rate of formation of H2O2 from O2 of 8.50 mmol gcat–1 h–1 and a record turnover frequency (TOF) of 28.7 h–1 under visible light irradiation (λ > 400 nm). Synchrotron powder X-ray diffraction (SPXRD) and neutron powder diffraction (NPD) confirm the structure of Re10-MFM-67, and together with extended X-ray absorption fine structure (EXAFS) analysis establish the coordination environment and binding of the [ReI(CO)3Cl] moiety within the framework structure. In situ electron paramagnetic resonance (EPR) spectroscopy suggests that photocatalytic H2O2 generation on Re10-MFM-67 occurs via a two-step oxygen reduction reaction (ORR) pathway with the superoxide anion formed as an intermediate. This study promotes the design of MOF-based photocatalysts with conjugated ligands for efficient photosynthesis.
|
Jul 2025
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
Wenyuan
Huang
,
Meng
He
,
Bing
An
,
Yinlin
Chen
,
Xue
Han
,
Lan
An
,
Meredydd
Kippax-Jones
,
Jiangnan
Li
,
Yuhang
Yang
,
Mark D.
Frogley
,
Cheng
Li
,
Danielle
Crawshaw
,
Pascal
Manuel
,
Svemir
Rudic
,
Yongqiang
Chen
,
Ian
Silverwood
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Ben F.
Spencer
,
Marek
Nikiel
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[37155, 36474]
Open Access
Abstract: Capture of trace benzene is an important and challenging task. Metal–organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti8O8(OH)4(BDC)6 where H2BDC is 1,4-benzenedicarboxylic acid). At 298 K, MIL-125-Zn exhibits a benzene uptake of 7.63 mmol g−1 at 1.2 mbar and 5.33 mmol g−1 at 0.12 mbar, and breakthrough experiments confirm the removal of trace benzene (from 5 to <0.5 ppm) from air (up to 111,000 min g−1 of metal–organic framework), even after exposure to moisture. The binding of benzene to the defect and open Zn(II) sites at low pressure has been visualized by diffraction, scattering and spectroscopy. This work highlights the importance of fine-tuning pore chemistry for designing adsorbents for the removal of air pollutants.
|
Nov 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Dukula
De Alwis Jayasinghe
,
Yinlin
Chen
,
Jiangnan
Li
,
Justyna M.
Rogacka
,
Meredydd
Kippax-Jones
,
Wanpeng
Lu
,
Sergey
Sapchenko
,
Jinyue
Yang
,
Sarayute
Chansai
,
Tianze
Zhou
,
Lixia
Guo
,
Yujie
Ma
,
Longzhang
Dong
,
Daniil
Polyukhov
,
Lutong
Shan
,
Yu
Han
,
Danielle
Crawshaw
,
Xiangdi
Zeng
,
Zhaodong
Zhu
,
Lewis
Hughes
,
Mark D.
Frogley
,
Pascal
Manuel
,
Svemir
Rudic
,
Yongqiang
Chen
,
Christopher
Hardacre
,
Martin
Schroeder
,
Sihai
Yang
Open Access
Abstract: Ammonia (NH3) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO2 each year. Efforts to produce green NH3 are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal–organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH3. Here, we address these challenges by developing a pore-expansion strategy utilizing the flexible phosphonate framework, STA-12(Ni), which shows exceptional stability and capture of NH3 at ppm levels at elevated temperatures (100–220 °C) even under humid conditions. A remarkable NH3 uptake of 4.76 mmol g–1 at 100 μbar (equivalent to 100 ppm) is observed, and in situ neutron powder diffraction, inelastic neutron scattering, and infrared microspectroscopy, coupled with modeling, reveal a pore expansion from triclinic to a rhombohedral structure on cooperative binding of NH3 to unsaturated Ni(II) sites and phosphonate groups. STA-12(Ni) can be readily engineered into pellets or monoliths without losing adsorption capacity, underscoring its practical potential.
|
Nov 2024
|
|
I19-Small Molecule Single Crystal Diffraction
|
Zhonghang
Chen
,
Peiyu
Fang
,
Jiangnan
Li
,
Xue
Han
,
Wenhao
Huang
,
Wenyue
Cui
,
Zhiwei
Liu
,
Mark R.
Warren
,
David
Allan
,
Peng
Cheng
,
Sihai
Yang
,
Wei
Shi
Diamond Proposal Number(s):
[36394]
Open Access
Abstract: Due to almost identical boiling points of benzene and cyclohexane, the extraction of trace benzene from cyclohexane is currently performed via the energy-intensive extractive distillation method. Their adsorptive separation by porous materials is hampered by their similar dimensions. Metal-organic frameworks (MOFs) with versatile pore environments are capable of molecular discrimination, but the separation of trace substrates in liquid-phase remains extremely challenging. Herein, we report a robust MOF (NKU-300) with triangular channels decorated with crown ether that can discriminate trace benzene from cyclohexane, exhibiting an unprecedented selectivity of 8615(10) for the mixture of benzene/cyclohexane (v/v = 1/1000). Remarkably, NKU-300 demonstrates exceptional selectivities for the extraction of benzene from cyclohexane over a wide range of concentrations of 0.1%–50% with ultrafast sorption kinetics and excellent stability. Single-crystal X-ray diffraction and computational modelling reveal that multiple supramolecular interactions cooperatively immobilise benzene molecules in the triangular channel, enabling the superior separation performance. This study will promote the application of advanced sorbents with tailored binding sites for challenging industrial separations.
|
Oct 2024
|
|
I11-High Resolution Powder Diffraction
|
Xiangdi
Zeng
,
Zi
Wang
,
Meng
He
,
Wanpeng
Lu
,
Wenyuan
Huang
,
Bing
An
,
Jiangnan
Li
,
Mufan
Li
,
Ben F.
Spencer
,
Sarah J.
Day
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[37155]
Open Access
Abstract: Phenylacetylene is a detrimental impurity in the polymerisation of styrene, capable of poisoning catalysts even at ppm levels and significantly degrading the quality of polystyrene. The semi-hydrogenation of phenylacetylene to styrene instead of ethylbenzene is, therefore, an important industrial process. We report a novel cerium(IV)-based metal-organic framework (denoted as Ce-bptc), which is comprised of {Ce6} clusters bridged by biphenyl-3,3’,5,5’-tetracarboxylate linkers. Ce-bptc serves as an ideal support for palladium nanoparticles and the Pd@Ce-bptc catalyst demonstrates an excellent catalytic performance for semi-hydrogenation of phenylacetylene, achieving a selectivity of 93% to styrene on full conversion under ambient conditions with excellent reusability. In situ synchrotron X-ray powder diffraction and electron paramagnetic resonance spectroscopy revealed the binding domain of phenylacetylene within Ce-bptc and details of the reaction mechanism.
|
Oct 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I15-1-X-ray Pair Distribution Function (XPDF)
|
Wanpeng
Lu
,
Yinlin
Chen
,
Zi
Wang
,
Jin
Chen
,
Yujie
Ma
,
Weiyao
Li
,
Jiangnan
Li
,
Meng
He
,
Mengtian
Fan
,
Alena M.
Sheveleva
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Mark D.
Frogley
,
Philip A.
Chater
,
Catherine
Dejoie
,
Martin
Schroder
,
Sihai
Yang
,
Lixia
Guo
Open Access
Abstract: The development of materials for ammonia (NH3) storage is an important and challenging task. Here, we report the high NH3 uptake in a series of copper-carboxylate materials, namely MFM-100, MFM-101, MFM-102, MFM-126, MFM-127, MFM-190(F), MFM-170, and Cu-MOP-1a. At 273 K and 1 bar, MFM-101 shows an exceptional uptake of 21.9 mmol g−1. X-ray pair distribution function analysis reveals an unusual crystalline-amorphous-crystalline phase transition for the isoreticular MFM-100, MFM-101 and MFM-102 upon adsorption and desorption of NH3 followed by regeneration in water. In situ X-ray diffraction, synchrotron infrared micro-spectroscopy, and electron paramagnetic resonance spectroscopy are employed to elucidate the presence of strong Cu(II)⋯NH3 interactions and changes in coordination at the [Cu2(O2CR)4] (R = di-, tri-, and tetra-phenyl ligands) paddlewheel.
|
Sep 2024
|
|
I19-Small Molecule Single Crystal Diffraction
|
Jiangnan
Li
,
Xinran
Zhang
,
Mengtian
Fan
,
Yinlin
Chen
,
Yujie
Ma
,
Gemma
Smith
,
Inigo
Vitórica-Yrezábal
,
Daniel
Lee
,
Shaojun
Xu
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[34413]
Open Access
Abstract: Optimization of active sites and stability under irradiation are important targets for sorbent materials that might be used for iodine (I2) storage. Herein, we report the direct observation of I2 binding in a series of Cu(II)-based isostructural metal–organic frameworks, MFM-170, MFM-172, MFM-174, NJU-Bai20, and NJU-Bai21, incorporating various functional groups (–H, −CH3, – NH2, –C≡C–, and −CONH–, respectively). MFM-170 shows a reversible uptake of 3.37 g g–1 and a high packing density of 4.41 g cm–3 for physiosorbed I2. The incorporation of −NH2 and –C≡C– moieties in MFM-174 and NJU-Bai20, respectively, enhances the binding of I2, affording uptakes of up to 3.91 g g–1. In addition, an exceptional I2 packing density of 4.83 g cm–3 is achieved in MFM-174, comparable to that of solid iodine (4.93 g cm–3). In situ crystallographic studies show the formation of a range of supramolecular and chemical interactions [I···N, I···H2N] and [I···C≡C, I–C═C–I] between −NH2, –C≡C– sites, respectively, and adsorbed I2 molecules. These observations have been confirmed via a combination of solid-state nuclear magnetic resonance, X-ray photoelectron, and Raman spectroscopies. Importantly, γ-irradiation confirmed the ultraresistance of MFM-170, MFM-174, and NJU-Bai20 suggesting their potential as efficient sorbents for cleanup of radioactive waste.
|
May 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Xiangbing
Zeng
,
Jiangnan
Li
,
Meng
He
,
Wanpeng
Lu
,
Danielle
Crawshaw
,
Lixia
Guo
,
Yujie
Ma
,
Meredydd
Kippax-Jones
,
Yongqiang
Cheng
,
Pascal
Manuel
,
Svemir
Rudic
,
Mark D.
Frogley
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: We report the high adsorption of NH3 in the titanium-based metal-organic framework, MFM-300(Ti), comprising extended [TiO6]∞ chains linked by biphenyl-3,3’,5,5’-tetracarboxylate ligands. At 273 K and 1 bar, MFM-300(Ti) shows an exceptional NH3 uptake of 23.4 mmol g–1 with a record-high packing density of 0.84 g cm–3. Dynamic breakthrough experiments confirm the excellent uptake and separation of NH3 at low concentration (1000 ppm). The combination of in situ neutron powder diffraction and spectroscopic studies reveal strong, yet reversible binding interactions of NH3 to the framework oxygen sites.
|
Apr 2024
|
|
I19-Small Molecule Single Crystal Diffraction
|
Zi
Wang
,
Alena M.
Sheveleva
,
Jiangnan
Li
,
Zhengyang
Zhou
,
Sergei
Sapchenko
,
George
Whitehead
,
Mark R.
Warren
,
David
Collison
,
Junliang
Sun
,
Martin
Schroeder
,
Eric J. L.
Mcinnes
,
Sihai
Yang
,
Floriana
Tuna
Diamond Proposal Number(s):
[31627]
Open Access
Abstract: MFM-520(Zn) confines dimers of NO2 with a high adsorption of 4.52 mmol g−1 at 1 bar at 298 K. The synthesis and the incommensurate structure of Cu-doped MFM-520(Zn) are reported. The introduction of paramagnetic Cu2+ sites allows investigation of the electronic and geometric structure of metal site by in situ electron paramagnetic resonance (EPR) spectroscopy upon adsorption of NO2. By combining continuous wave and electron-nuclear double resonance spectroscopy, an unusual reverse Berry distorted coordination geometry of the Cu2+ centers is observed. Interestingly, Cu-doped MFM-520(Zn0.95Cu0.05) shows enhanced adsorption of NO2 of 5.02 mmol g−1 at 1 bar at 298 K. Whereas MFM-520(Zn) confines adsorbed NO2 as N2O4, the presence of monomeric NO2 at low temperature suggests that doping with Cu2+ centers into the framework plays an important role in tuning the dimerization of NO2 molecules in the pore via the formation of specific host-guest interactions.
|
Nov 2023
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Wenyaun
Huang
,
Qingqing
Mei
,
Shaojun
Xu
,
Bing
An
,
Meng
He
,
Jiangnan
Li
,
Yinlin
Chen
,
Xue
Han
,
Tian
Luo
,
Lixia
Guo
,
Joseph
Hurd
,
Daniel
Lee
,
Evan
Tillotson
,
Sarah
Haigh
,
Alex
Walton
,
Sarah
Day
,
Louise S.
Natrjan
,
Martin
Schroeder
,
Sihai
Yang
Open Access
Abstract: Formamides are important feedstocks for the manufacture of many fine chemicals. State-of-the-art synthesis of formamides relies on the use of an excess amount of reagents, giving copious waste and thus poor atom-economy. Here, we report the first example of direct synthesis of N-formamides by coupling two challenging reactions, namely reductive amination of carbonyl compounds, particularly biomass-derived aldehydes and ketones, and fixation of CO2 in the presence of H2 over a metal-organic framework supported ruthenium catalyst, Ru/MFM-300(Cr). Highly selective production of N-formamides has been observed for a wide range of carbonyl compounds. Synchrotron X-ray powder diffraction reveals the presence of strong host-guest binding interactions via hydrogen bonding and parallel-displaced π···π interactions between the catalyst and adsorbed substrates facilitating the activation of substrates and promoting selectivity to formamides. The use of multifunctional porous catalysts to integrate CO2 utilisation in the synthesis of formamide products will have a significant impact in the sustainable synthesis of feedstock chemicals.
|
Oct 2023
|
|