I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Raphael
Reinbold
,
Ingvild C.
Hvinden
,
Patrick
Rabe
,
Ryan A.
Herold
,
Alina
Finch
,
James
Wood
,
Melissa
Morgan
,
Maximillian
Staudt
,
Ian J.
Clifton
,
Fraser A.
Armstrong
,
James S. O.
Mccullagh
,
Jo
Redmond
,
Chiara
Bardella
,
Martine I.
Abboud
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[23459]
Open Access
Abstract: Ivosidenib, an inhibitor of isocitrate dehydrogenase 1 (IDH1) R132C and R132H variants, is approved for the treatment of acute myeloid leukaemia (AML). Resistance to ivosidenib due to a second site mutation of IDH1 R132C, leading to IDH1 R132C/S280F, has emerged. We describe biochemical, crystallographic, and cellular studies on the IDH1 R132C/S280F and R132H/S280F variants that inform on the mechanism of second-site resistance, which involves both modulation of inhibitor binding at the IDH1 dimer-interface and alteration of kinetic properties, which enable more efficient 2-HG production relative to IDH1 R132C and IDH1 R132H. Importantly, the biochemical and cellular results demonstrate that it should be possible to overcome S280F mediated resistance in AML patients by using alternative inhibitors, including some presently in phase 2 clinical trials.
|
Aug 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Open Access
Abstract: The JmjC family of 2-oxoglutarate dependent oxygenases catalyse a range of hydroxylation and demethylation reactions in humans and other animals. Jumonji domain-containing 7 (JMJD7) is a JmjC (3S)-lysyl-hydroxylase that catalyses the modification of Developmentally Regulated GTP Binding Proteins 1 and 2 (DRG1 and 2); JMJD7 has also been reported to have histone endopeptidase activity. Here we report biophysical and biochemical studies on JMJD7 from Drosophila melanogaster (dmJMJD7). Notably, crystallographic analyses reveal that the unusual dimerization mode of JMJD7, which involves interactions between both the N- and C-terminal regions of both dmJMJD7 monomers and disulfide formation, is conserved in human JMJD7 (hsJMJD7). The results further support the assignment of JMJD7 as a lysyl hydroxylase and will help enable the development of selective inhibitors for it and other JmjC oxygenases.
|
Apr 2022
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12346]
Open Access
Abstract: Crystallization is the bottleneck in macromolecular crystallography; even when a protein crystallises, crystal packing often influences ligand-binding and protein–protein interaction interfaces, which are the key points of interest for functional and drug discovery studies. The human hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) readily crystallises as a homotrimer, but with a sterically blocked active site. We explored strategies aimed at altering PHD2 crystal packing by protein modification and molecules that bind at its active site and elsewhere. Following the observation that, despite weak inhibition/binding in solution, succinamic acid derivatives readily enable PHD2 crystallization, we explored methods to induce crystallization without active site binding. Cyclic peptides obtained via mRNA display bind PHD2 tightly away from the active site. They efficiently enable PHD2 crystallization in different forms, both with/without substrates, apparently by promoting oligomerization involving binding to the C-terminal region. Although our work involves a specific case study, together with those of others, the results suggest that mRNA display-derived cyclic peptides may be useful in challenging protein crystallization cases.
|
Dec 2020
|
|
I03-Macromolecular Crystallography
|
Tongri
Liu
,
Martine I.
Abboud
,
Rasheduzzaman
Chowdhury
,
Anthony
Tumber
,
Adam P.
Hardy
,
Kerstin
Lippl
,
Christopher T.
Lohans
,
Elisabete
Pires
,
James
Wickens
,
Michael
Mcdonough
,
Christopher M.
West
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[12346]
Open Access
Abstract: In animals, the response to chronic hypoxia is mediated by prolyl-hydroxylases (PHDs) that regulate the levels of hypoxia inducible transcription factor a (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non-HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-Phase Kinase Associated Protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, TgPhyA informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.
|
Sep 2020
|
|
I03-Macromolecular Crystallography
|
James P.
Holt‐martyn
,
Rasheduzzaman
Chowdhury
,
Anthony
Tumber
,
Tzu‐lan
Yeh
,
Martine I.
Abboud
,
Kerstin
Lippl
,
Christopher T.
Lohans
,
Gareth W.
Langley
,
William
Figg
,
Michael A.
Mcdonough
,
Christopher W.
Pugh
,
Peter J.
Ratcliffe
,
Christopher J.
Schofield
Open Access
Abstract: The 2‐oxoglutarate‐dependent hypoxia inducible factor prolyl hydroxylases (PHDs) are targets for treatment of a variety of diseases including anaemia. One PHD inhibitor is approved for use for the treatment of renal anaemia and others are in late stage clinical trials. The number of reported templates for PHD inhibition is limited. We report structure–activity relationship and crystallographic studies on a promising class of 4‐hydroxypyrimidine‐containing PHD inhibitors.
|
Dec 2019
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[1230]
Open Access
Abstract: Background: In humans and other animals, the chronic hypoxic response is mediated by hypoxia inducible transcription factors (HIFs) which regulate the expression of genes that counteract the effects of limiting oxygen. Prolyl hydroxylases (PHDs) act as hypoxia sensors for the HIF system in organisms ranging from humans to the simplest animal Trichoplax adhaerens.
Methods: We report structural and biochemical studies on the T. adhaerens HIF prolyl hydroxylase (TaPHD) that inform about the evolution of hypoxia sensing in animals.
Results: High resolution crystal structures (≤1.3 Å) of TaPHD, with and without its HIFα substrate, reveal remarkable conservation of key active site elements between T. adhaerens and human PHDs, which also manifest in kinetic comparisons.
Conclusion: Conserved structural features of TaPHD and human PHDs include those apparently enabling the slow binding/reaction of oxygen with the active site Fe(II), the formation of a stable 2-oxoglutarate complex, and a stereoelectronically promoted change in conformation of the hydroxylated proline-residue. Comparison of substrate selectivity between the human PHDs and TaPHD provides insights into the selectivity determinants of HIF binding by the PHDs, and into the evolution of the multiple HIFs and PHDs present in higher animals.
|
Nov 2018
|
|
I04-Macromolecular Crystallography
|
Suzana
Markolovic
,
Qinqin
Zhuang
,
Sarah E.
Wilkins
,
Charlotte D.
Eaton
,
Martine I.
Abboud
,
Maximiliano J.
Katz
,
Helen E.
Mcneil
,
Robert K.
Leśniak
,
Charlotte
Hall
,
Weston B.
Struwe
,
Rebecca
Konietzny
,
Simon
Davis
,
Ming
Yang
,
Wei
Ge
,
Justin L. P.
Benesch
,
Benedikt M.
Kessler
,
Peter J.
Ratcliffe
,
Matthew E.
Cockman
,
Roman
Fischer
,
Pablo
Wappner
,
Rasheduzzaman
Chowdhury
,
Mathew L.
Coleman
,
Christopher J.
Schofield
Abstract: Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(ii)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.
|
Jun 2018
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[313]
Abstract: The most important resistance mechanism to β-lactam antibiotics involves hydrolysis by two β-lactamase categories: the nucleophilic serine (SBL) and the metallo- (MBL) β-lactamases. Cyclobutanones are hydrolytically stable β-lactam analogues with potential to inhibit both SBLs and MBLs. We describe solution and crystallographic studies on the interaction of a cyclobutanone penem analogue with the clinically important MBL SPM-1. NMR experiments using 19F-labeled SPM-1 imply the cyclobutanone binds to SPM-1 with micromolar affinity. A crystal structure of the SPM-1:cyclobutanone complex reveals binding of the hydrated cyclobutanone via interactions with one of the zinc ions, stabilisation of the hydrate by hydrogen bonding to zinc-bound water, and hydrophobic contacts with aromatic residues. NMR analyses using a 13C-labeled cyclobutanone support assignment of the bound species as the hydrated ketone. The results inform on how MBLs bind substrates and stabilize tetrahedral intermediates. They support further investigations on the use of transition state and/or intermediate analogues as inhibitors of all β-lactamase classes.
|
Dec 2017
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Tzu-Lan
Yeh
,
Thomas m.
Leissing
,
Martine I.
Abboud
,
Cyrille C.
Thinnes
,
Onur
Atasoylu
,
James P.
Holt-Martyn
,
Dong
Zhang
,
Anthony
Tumber
,
Kerstin
Lippl
,
Christopher T.
Lohans
,
Ivanhoe K. H.
Leung
,
Helen
Morcrette
,
Ian J.
Clifton
,
Timothy D. W.
Claridge
,
Akane
Kawamura
,
Emily
Flashman
,
Xin
Lu
,
Peter J.
Ratcliffe
,
Rasheduzzaman
Chowdhury
,
Christopher W.
Pugh
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[12346, 9306]
Open Access
Abstract: Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1–3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of therapeutic interest. We describe cellular, biophysical, and biochemical studies comparing four PHD inhibitors currently in clinical trials for anaemia treatment, that describe their mechanisms of action, potency against isolated enzymes and in cells, and selectivities versus representatives of other human 2OG oxygenase subfamilies. The ‘clinical’ PHD inhibitors are potent inhibitors of PHD catalyzed hydroxylation of the HIF-α oxygen dependent degradation domains (ODDs), and selective against most, but not all, representatives of other human 2OG dependent dioxygenase subfamilies. Crystallographic and NMR studies provide insights into the different active site binding modes of the inhibitors. Cell-based results reveal the inhibitors have similar effects on the upregulation of HIF target genes, but differ in the kinetics of their effects and in extent of inhibition of hydroxylation of the N- and C-terminal ODDs; the latter differences correlate with the biophysical observations.
|
Sep 2017
|
|
I04-Macromolecular Crystallography
|
Guo-Bo
Li
,
Jurgen
Brem
,
Robert
Lesniak
,
Martine I.
Abboud
,
Christopher T.
Lohans
,
Ian J.
Clifton
,
Sheng-Yong
Yang
,
Juan-Carlos
Jiménez-Castellanos
,
Matthew B.
Avison
,
James
Spencer
,
Michael A.
Mcdonough
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[12346]
Abstract: Crystallographic analyses of the VIM-5 metallo-β-lactamase (MBL) with isoquinoline inhibitors reveal non zinc ion binding modes. Comparison with other MBL–inhibitor structures directed addition of a zinc-binding thiol enabling identification of potent B1 MBL inhibitors. The inhibitors potentiate meropenem activity against clinical isolates harboring MBLs.
|
Apr 2017
|
|