I09-Surface and Interface Structural Analysis
|
Adam J.
Jackson
,
Benjamin J.
Parrett
,
Joe
Willis
,
Alex M.
Ganose
,
W. W. Winnie
Leung
,
Yuhan
Liu
,
Benjamin A. D.
Williamson
,
Timur K.
Kim
,
Moritz
Hoesch
,
Larissa S. I.
Veiga
,
Raman
Kalra
,
Jens
Neu
,
Charles A.
Schmuttenmaer
,
Tien-Lin
Lee
,
Anna
Regoutz
,
Tung-Chun
Lee
,
Tim D.
Veal
,
Robert G.
Palgrave
,
Robin
Perry
,
David O.
Scanlon
Diamond Proposal Number(s):
[24449]
Open Access
Abstract: Transparent conducting oxides have become ubiquitous in modern optoelectronics. However, the number of oxides that are transparent to visible light and have the metallic-like conductivity necessary for applications is limited to a handful of systems that have been known for the past 40 years. In this work, we use hybrid density functional theory and defect chemistry analysis to demonstrate that tri-rutile zinc antimonate, ZnSb2O6, is an ideal transparent conducting oxide and to identify gallium as the optimal dopant to yield high conductivity and transparency. To validate our computational predictions, we have synthesized both powder samples and single crystals of Ga-doped ZnSb2O6 which conclusively show behavior consistent with a degenerate transparent conducting oxide. This study demonstrates the possibility of a family of Sb(V)-containing oxides for transparent conducting oxide and power electronics applications.
|
Oct 2022
|
|
|
Abstract: Transparent conductive oxides (TCOs) exhibiting high near-infrared (NIR) transmittance are one of the key materials for highly efficient thin-film solar cells with widened spectral sensitivity. To realize excellent NIR transparency in a TCO film, developing a dopant providing high mobility (µ) carriers is quite important. Herein, it is demonstrated that W is a high-μ dopant in rutile SnO2, which is unexpected from the conventional strategy. A combination of electrical transport property measurements and hybrid density functional theory calculations reveals that W behaves as a singly charged donor (W5+) showing minimized ionized impurity scattering. This charge state is realized by the splitting of the W 5d t2g-states originating not only from the octahedral crystal field but also hybridization with the O 2p orbitals, whose contribution has not been considered in transition metal-doped TCOs. Hybridization between metal d orbital and O 2p orbitals would provide a new guide for designing a novel dopant of NIR transparent conductors.
|
Dec 2021
|
|
|
Abstract: Thermoelectric materials offer the possibility of enhanced energy efficiency due to waste heat scavenging. Based on their high-temperature stability and ease of synthesis, efficient oxide-based thermoelectrics remain a tantalizing research goal; however, their current performance is significantly lower than the industry standards such as Bi2Te3 and PbTe. Among the oxide thermoelectrics studied thus far, the development of n-type thermoelectric oxides has fallen behind that of p-type oxides, primarily due to limitations on the overall dimensionless figure of merit, or ZT, by large lattice thermal conductivities. In this article, we propose a simple strategy based on chemical intuition to discover enhanced n-type oxide thermoelectrics. Using state-of-the-art calculations, we demonstrate that the PbSb2O6-structured BaBi2O6 represents a novel structural motif for thermoelectric materials, with a predicted ZT of 0.17–0.19. We then suggest two methods to enhance the ZT up to 0.22, on par with the current best earth-abundant n-type thermoelectric at around 600 K, SrTiO3, which has been much more heavily researched. Our analysis of the factors that govern the electronic and phononic scattering in this system provides a blueprint for optimizing ZT beyond the perfect crystal approximation.
|
Sep 2021
|
|
|
Open Access
Abstract: Ternary lanthanide indium oxides LnInO3 (Ln = La, Pr, Nd, Sm) were synthesized by high-temperature solid-state reaction and characterized by X-ray powder diffraction. Rietveld refinement of the powder patterns showed the LnInO3 materials to be orthorhombic perovskites belonging to the space group Pnma, based on almost-regular InO6 octahedra and highly distorted LnO12 polyhedra. Experimental structural data were compared with results from density functional theory (DFT) calculations employing a hybrid Hamiltonian. Valence region X-ray photoelectron and K-shell X-ray emission and absorption spectra of the LnInO3 compounds were simulated with the aid of the DFT calculations. Photoionization of lanthanide 4f orbitals gives rise to a complex final-state multiplet structure in the valence region for the 4fn compounds PrInO3, NdInO3, and SmInO3, and the overall photoemission spectral profiles were shown to be a superposition of final-state 4fn–1 terms onto the cross-section weighted partial densities of states from the other orbitals. The occupied 4f states are stabilized in moving across the series Pr–Nd–Sm. Band gaps were measured using diffuse reflectance spectroscopy. These results demonstrated that the band gap of LaInO3 is 4.32 eV, in agreement with DFT calculations. This is significantly larger than a band gap of 2.2 eV first proposed in 1967 and based on the idea that In 4d states lie above the top of the O 2p valence band. However, both DFT and X-ray spectroscopy show that In 4d is a shallow core level located well below the bottom of the valence band. Band gaps greater than 4 eV were observed for NdInO3 and SmInO3, but a lower gap of 3.6 eV for PrInO3 was shown to arise from the occupied Pr 4f states lying above the main O 2p valence band.
|
Mar 2021
|
|
|
Open Access
Abstract: Nine members of two contiguous solid solutions, Ba3Sc2−xInxO5Cu2S2 and Ba3In2O5Cu2S2−ySey (x, y = 0, 0.5, 1, 1.5 and 2), were synthesised at temperatures between 800 °C and 900 °C by stoichiometric combination of binary precursors. Their structures were determined by Rietveld refinement of X-ray powder diffraction data and found to adopt the SmNi3Ge3 structure with I4/mmm symmetry. Approximate Vegard law relationships were found within each solution between the lattice parameters and composition, with an observed cell volume of 466.4 Å3 for Ba3Sc2O5Cu2S2 increasing to 481.0 Å3 for Ba3In2O5Cu2S2 and finally to 499.0 Å3 for Ba3In2O5Cu2Se2. In the first solid solution, this volume increase is driven by the replacement of scandium by the larger indium ion, generating increased strain in the copper chalcogenide layer. In the second solution the substitution into the structure of the larger selenium drives further volume expansion, while relieving the strain in the copper chalcogenide layer. Band gaps were estimated from reflectance spectroscopy and these were determined to be 3.3 eV, 1.8 eV, and 1.3 eV for the three end members Ba3Sc2O5Cu2S2, Ba3In2O5Cu2S2, and Ba3Sc2In2O5Cu2Se2, respectively. For the intermediate compositions a linear relationship between band gap size and composition was observed, driven in the first solution by the introduction of the more electronegative indium lowering the conduction band minimum and in the second solution by the substitution of the electropositive selenium raising the valance band maximum. Photocatalytic activity was observed in all samples under solar simulated light, based on a dye degradation test, with the exception of Ba3In2O5Cu2Se1.5S0.5. The most active sample was found to be Ba3Sc2O5Cu2S2, the material with the largest band gap.
|
Oct 2020
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[16644]
Open Access
Abstract: n-type transparent conductors (TCs) are key materials in the modern optoelectronics industry. Despite years of research, the development of a high-performance p-type TC has lagged far behind that of its n-type counterparts, delaying the advent of “transparent electronics”-based p-n junctions. Here, we propose the layered oxysulfide [Cu2S2][Sr3Sc2O5] as a structural motif for discovering p-type TCs. We have used density functional theory to screen 24 compositions based on this motif in terms of their thermodynamic and dynamic stability and their electronic structure, thus predicting two p-type TCs and eight other stable systems with semiconductor properties. Following our predictions, we have successfully synthesized our best candidate p-type TC, [Cu2S2][Ba3Sc2O5], which displays structural and optical properties that validate our computational models. It is expected that the design principles emanating from this analysis will move the field closer to the realization of a high figure-of-merit p-type TC.
|
Jun 2020
|
|
I09-Surface and Interface Structural Analysis
|
Benjamin A. D.
Williamson
,
Thomas J.
Featherstone
,
Sanjayan S.
Sathasivam
,
Jack E. N.
Swallow
,
Huw
Shiel
,
Leanne A. H.
Jones
,
Matthew J
Smiles
,
Anna
Regoutz
,
Tien-Lin
Lee
,
Xueming
Xia
,
Christopher
Blackman
,
Pardeep K.
Thakur
,
Claire J.
Carmalt
,
Ivan P.
Parkin
,
Tim D.
Veal
,
David O.
Scanlon
Diamond Proposal Number(s):
[18195, 21431]
Open Access
Abstract: Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO2 is an earth abundant, cheaper alternative to In2O3 as a TCO however, its performance in terms of electrical properties lags behind that of In2O3. Based on the recent discovery of mobility and conductivity enhancements in In2O3 from resonant dopants, we use a combination of state-of-the-art hybrid density functional theory calculations, high resolution photoelectron spectroscopy and semiconductor statistics modelling to understand what the optimal dopant is to maximise performance of SnO2-based TCOs. We demonstrate that Ta is the optimal dopant for high performance SnO2, as it is a resonant dopant which is readily incorporated into SnO2 with the Ta 5d states sitting ca. 1.4 eV above the conduction band minimum. Experimentally, the electron effective mass of Ta doped SnO2 was shown to be 0.23m0, compared to 0.29m0 seen with conventional Sb doping, explaining its ability to yield higher mobilities and conductivities.
|
Feb 2020
|
|
|
Abdullah M
Alotaibi
,
Benjamin A. D.
Williamson
,
Sanjay
Sathasivam
,
Andreas
Kafizas
,
Mahdi
Alqahtani
,
Carlos
Sotelo-Vazquez
,
John
Buckeridge
,
Jiang
Wu
,
Sean P.
Nair
,
David O.
Scanlon
,
Ivan P.
Parkin
Open Access
Abstract: Multifunctional thin films which can display both photocatalytic and antibacterial activity are of great interest industrially. Here, for the first time, we have used aerosol assisted chemical vapour deposition (AACVD) to deposit highly photoactive thin films of Cu-doped anatase TiO2 on glass substrates. The films displayed much enhanced photocatalytic activity relative to pure anatase, and showed excellent antibacterial (vs S.Aureus and E.Coli) ability. Using a combination of transient absorption spectroscopy (TAS), photoluminescence (PL) measurements and hybrid density functional theory calculations, we have gained nanoscopic insights into the improved properties of the Cu-doped TiO2 films. Our analysis has highlighted that the interactions between substitutional and interstitial Cu in the anatase lattice can explain the extended exciton lifetimes observed in the doped samples, and the enhanced UV/visible light photoactivities observed.
|
Feb 2020
|
|
I09-Surface and Interface Structural Analysis
|
Jack E. N.
Swallow
,
Benjamin A. D.
Williamson
,
Sanjayan
Sathasivam
,
Max
Birkett
,
Thomas J.
Featherstone
,
Philip A. E.
Murgatroyd
,
Holly J.
Edwards
,
Zachary W.
Lebens-Higgins
,
David A.
Duncan
,
Mark
Farnworth
,
Paul
Warren
,
Nianhua
Peng
,
Tien-Lin
Lee
,
Louis F. J.
Piper
,
Anna
Regoutz
,
Claire J.
Carmalt
,
Ivan P.
Parkin
,
Vin R.
Dhanak
,
David O.
Scanlon
,
Tim D.
Veal
Diamond Proposal Number(s):
[18428]
Open Access
Abstract: Transparent conductors are a vital component of smartphones, touch-enabled displays, low emissivity windows and thin film photovoltaics. Tin-doped In2O3 (ITO) dominates the transparent conductive films market, accounting for the majority of the current multi-billion dollar annual global sales. Due to the high cost of indium, however, alternatives to ITO have been sought but have inferior properties. Here we demonstrate that molybdenum-doped In2O3 (IMO) has higher mobility and therefore higher conductivity than ITO with the same carrier density. This also results in IMO having increased infrared transparency compared to ITO of the same conductivity. These properties enable current performance to be achieved using thinner films, reducing the amount of indium required and raw material costs by half. The enhanced doping behavior arises from Mo 4d donor states being resonant high in the conduction band and negligibly perturbing the host conduction band minimum, in contrast to the adverse perturbation caused by Sn 5s dopant states. This new understanding will enable better and cheaper TCOs based on both In2O3 and other metal oxides.
|
Sep 2019
|
|
|
Open Access
Abstract: Modification of TiO2 to increase its visible light activity and promote higher performance photocatalytic ability has become a key research goal for materials scientists in the past two decades. One of the most popular approaches proposed this as “passivated codoping”, whereby an equal number of donor and acceptor dopants are introduced into the lattice, producing a charge neutral system with a reduced band gap. Using the archetypal codoping pairs of [Nb+N] and [Ta+N] doped anatase, we demonstrate using hybrid density functional theory that compensated codoping is not achievable in TiO2. Our results indicate that the natural defect chemistry of the host system (in this case n-type anatase TiO2) is dominant, and so concentration parity of dopant types is not achievable under any thermodynamic growth conditions. The implications of compensated codoping for band gap manipulation in general are discussed.
|
Mar 2019
|
|