B18-Core EXAFS
|
Diamond Proposal Number(s):
[36367]
Open Access
Abstract: Dry reforming of methane (DRM) offers a sustainable route to convert CH4 and CO2 into syngas, addressing both greenhouse gas emissions and energy demand. However, catalyst deactivation due to sintering and coking limits practical applications. In this work, we developed a mesoporous Ni-based catalyst (Ni/ZrSBA-15-OH) featuring abundant Ni-ZrO2 interfaces and small Ni nanoparticles (5.6 nm) confined within a stable silica framework. This catalyst showed excellent performance, achieving 80% CH4 and 87% CO2 conversions at 750 °C, with minimal coke formation (0.4 mg gcat-1 h-1) and high durability (1.3% CH4 conversion loss over 20 hours). Advanced characterizations (XAS, TEM, H2-TPR, and TPSR) revealed that the metal-oxide interface enhances the activation of reactants and stabilizes active sites. DFT calculations confirmed that the Ni-ZrO2 interface increases the energy barrier for CH* dehydrogenation, effectively suppressing carbon deposition. This study provides a rational strategy for designing structurally robust and coke-resistant Ni-based catalysts for efficient DRM.
|
May 2025
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
E01-JEM ARM 200CF
E02-JEM ARM 300CF
I20-EDE-Energy Dispersive EXAFS (EDE)
|
Lu
Chen
,
Xuze
Guan
,
Zhaofu
Fei
,
Hiroyuki
Asakura
,
Lun
Zhang
,
Zhipeng
Wang
,
Xinlian
Su
,
Zhangyi
Yao
,
Luke L.
Keenan
,
Shusaku
Hayama
,
Matthijs A.
Van Spronsen
,
Burcu
Karagoz
,
Georg
Held
,
Christopher S.
Allen
,
David G.
Hopkinson
,
Donato
Decarolis
,
June
Callison
,
Paul J.
Dyson
,
Feng Ryan
Wang
Diamond Proposal Number(s):
[30622, 33257, 31922]
Open Access
Abstract: Selective catalytic oxidation (SCO) of NH3 to N2 is one of the most effective methods used to eliminate NH3 emissions. However, achieving high conversion over a wide operating temperature range while avoiding over-oxidation to NOx remains a significant challenge. Here, we report a bi-metallic surficial catalyst (PtSCuO/Al2O3) with improved Pt atom efficiency that overcomes the limitations of current catalysts. It achieves full NH3 conversion at 250 °C with a weight hourly space velocity of 600 ml NH3·h−1·g−1, which is 50 °C lower than commercial Pt/Al2O3, and maintains high N2 selectivity through a wide temperature window. Operando XAFS studies reveal that the surface Pt atoms in PtSCuO/Al2O3 enhance the redox properties of the Cu species, thus accelerating the Cu2+ reduction rate and improving the rate of the NH3-SCO reaction. Moreover, a synergistic effect between Pt and Cu sites in PtSCuO/Al2O3 contributes to the high selectivity by facilitating internal selective catalytic reduction.
|
Jan 2025
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[36367]
Abstract: Deuterated compounds have broad applications across various fields, with dehalogenative deuteration serving as an efficient method to obtain these molecules. However, the diverse electronic structures of active sites in the heterogeneous system and the limited recyclability in the homogeneous system significantly hinder the advancement of dehalogenative deuteration. In this study, we present a catalyst composed of copper single-atom sites anchored within an ordered mesoporous nitrogen-doped carbon matrix, synthesized via a mesopore confinement method. The Cu1/OMNC-1100 catalyst, characterized by Cu–N4 sites, demonstrates exceptional performance, high functional group tolerance, and remarkable durability in the deuteration of 2-bromo-6-methoxynaphthalene under relatively mild conditions (80 °C, 2 MPa of CO). Experimental results combined with X-ray absorption fine structure analysis reveal that Cu–N3 sites can be converted into more stable Cu–N4 counterparts at higher pyrolysis temperatures, resulting in enhanced catalytic activity. This work demonstrates a strategy for designing single-atom site catalysts with tunable coordination environments, providing a promising approach to improving catalytic performance in selective dehalogenative reactions under relatively mild conditions.
|
Jan 2025
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
E01-JEM ARM 200CF
I09-Surface and Interface Structural Analysis
I20-EDE-Energy Dispersive EXAFS (EDE)
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Xuze
Guan
,
Rong
Han
,
Hiroyuki
Asakura
,
Bolun
Wang
,
Lu
Chen
,
Jay Hon Cheung
Yan
,
Shaoliang
Guan
,
Luke
Keenan
,
Shusaku
Hayama
,
Matthijs A.
Van Spronsen
,
Georg
Held
,
Jie
Zhang
,
Hao
Gu
,
Yifei
Ren
,
Lun
Zhang
,
Zhangyi
Yao
,
Yujiang
Zhu
,
Anna
Regoutz
,
Tsunehiro
Tanaka
,
Yuzheng
Guo
,
Feng Ryan
Wang
Diamond Proposal Number(s):
[23759, 24450, 29092, 31852]
Open Access
Abstract: Single-atom catalysts have garnered significant attention due to their exceptional atom utilization and unique properties. However, the practical application of these catalysts is often impeded by challenges such as sintering-induced instability and poisoning of isolated atoms due to strong gas adsorption. In this study, we employed the mechanochemical method to insert single Cu atoms into the subsurface of Fe2O3 support. By manipulating the location of single atoms at the surface or subsurface, catalysts with distinct adsorption properties and reaction mechanisms can be achieved. It was observed that the subsurface Cu single atoms in Fe2O3 remained isolated under both oxidation and reduction environments, whereas surface Cu single atoms on Fe2O3 experienced sintering under reduction conditions. The unique properties of these subsurface single-atom catalysts call for innovations and new understandings in catalyst design.
|
Jul 2024
|
|
E01-JEM ARM 200CF
|
Diamond Proposal Number(s):
[33314]
Open Access
Abstract: Rigorous comparisons between single site- and nanoparticle (NP)-dispersed catalysts featuring the same composition, in terms of activity, selectivity, and reaction mechanism, are limited. This limitation is partly due to the tendency of single metal atoms to sinter into aggregated NPs at high loadings and elevated temperatures, driven by a decrease in metal surface free energy. Here, we have developed a unique two-step method for the synthesis of single Cu sites on ZSM-5 (termed CuS/ZSM-5) with high thermal stability. The atomic-level dispersion of single Cu sites was confirmed through scanning transmission electron microscopy, X-ray absorption fine structure (XAFS), and electron paramagnetic resonance spectroscopy. The CuS/ZSM-5 catalyst was compared to a CuO NP-based catalyst (termed CuN/ZSM-5) in the oxidation of NH3 to N2, with the former exhibiting superior activity and selectivity. Furthermore, operando XAFS and diffuse reflectance infrared Fourier transform spectroscopy studies were conducted to simultaneously assess the fate of the Cu and the surface adsorbates, providing a comprehensive understanding of the mechanism of the two catalysts. The study shows that the facile redox behavior exhibited by single Cu sites correlates with the enhanced activity observed for the CuS/ZSM-5 catalyst.
|
Jul 2024
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Diamond Proposal Number(s):
[31867]
Open Access
Abstract: Oxygen vacancy (Ov) is an anionic defect widely existed in metal oxide lattice, as exemplified by CeO2, TiO2, and ZnO. As Ov can modify the band structure of solid, it improves the physicochemical properties such as the semiconducting performance and catalytic behaviours. We report here a new type of Ov as an intrinsic part of a perfect crystalline surface. Such non-defect Ov stems from the irregular hexagonal sawtooth-shaped structure in the (111) plane of trivalent rare earth oxides (RE2O3). The materials with such intrinsic Ov structure exhibit excellent performance in ammonia decomposition reaction with surface Ru active sites. Extremely high H2 formation rate has been achieved at ~1 wt% of Ru loading over Sm2O3, Y2O3 and Gd2O3 surface, which is 1.5–20 times higher than reported values in the literature. The discovery of intrinsic Ov suggests great potentials of applying RE oxides in heterogeneous catalysis and surface chemistry.
|
Jul 2024
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[30403, 33297]
Abstract: PEO-LiX solid polymer electrolyte (SPE) with the addition of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) fillers is considered as a promising solid-state electrolyte for solid-state Li-ion batteries. However, the developments of the SPE have caused additional challenges, such as poor contact interface and SPE/Li interface stability during cycling, which always lead to potentially catastrophic battery failure. The main problem is that the real impact of LLZTO fillers on the interfacial properties between SPE and Li metal is still unclear. Herein, we combined the electrochemical measurement and in situ synchrotron-based X-ray absorption near-edge structure (XANES) imaging technology to study the role of LLZTO fillers in directing SPE/Li interface electrochemical performance. In situ XRF-XANES mapping during cycling showed that addition of an appropriate amount of LLZTO fillers (50 wt %) can improve the interfacial contact and stability between SPE and Li metal without reacting with the PEO and Li salts. Additionally, it also demonstrated the beneficial effect of LLZTO particles for suppressing the interface reactions between the Li metal and PEO-LiTFSI SPE and further inhibiting Li-metal dendrite growth. The Li|LiFePO4 batteries deliver long cycling for over 700 cycles with a low-capacity fade rate of 0.08% per cycle at a rate of 0.3C, revealing tremendous potential in promoting the large-scale application of future solid-state Li-ion batteries.
|
Mar 2024
|
|
I09-Surface and Interface Structural Analysis
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[29192, 30403]
Abstract: Na3Zr2Si2PO12(NZSP)-based NASICON solid-state electrolytes (SSEs) show not only competitive ionic conductivity but also high chemical stability in air, holding a great promise for enabling the use of sodium metal anode in solid-state sodium batteries. However, sodium (Na) metal dendrite growth inside SSE always leads to undesirable short-circuiting in battery even no obvious changes in interfacial contact loss and interfacial decomposition during cycling. How to control Na metal dendrite growth and in situ observe the effect of SSE/Na interface change on dendrite growth is quite challenging. Herein, an in situ synchrotron-based X-ray imaging method is developed to systematically investigate the dendrite origin in NZSP-based SSEs. It is find that the dendrite growth intrinsically depends on the grain boundaries (GBs) in NZSP and the NZSP/Na interfacial properties. It is confirmed that Na dendrite infiltration kinetic evolution in NZSP is strongly associated with Na ion/electron conductivity and Young's modulus of GBs. Moreover, the electro-chemo-mechanical phase-field model evaluation demonstrates that the basic reason for Na metal dendrite intrusion into the GBs of SSE is a combination of local polarization potential and the presence of stress formed at GBs.
|
Feb 2024
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Diamond Proposal Number(s):
[33267]
Open Access
Abstract: Designing reactive surface clusters at the nanoscale on metal-oxide supports enables selective molecular interactions in low-temperature catalysis and chemical sensing. Yet, finding effective material combinations and identifying the reactive site remains challenging and an obstacle for rational catalyst/sensor design. Here, the low-temperature oxidation of formaldehyde with CuOx clusters on Co3O4 nanoparticles is demonstrated yielding an excellent sensor for this critical air pollutant. When fabricated by flame-aerosol technology, such CuOx clusters are finely dispersed, while some Cu ions are incorporated into the Co3O4 lattice enhancing thermal stability. Importantly, infrared spectroscopy of adsorbed CO, near edge X-ray absorption fine structure spectroscopy and temperature-programmed reduction in H2 identified Cu+ and Cu2+ species in these clusters as active sites. Remarkably, the Cu+ surface concentration correlated with the apparent activation energy of formaldehyde oxidation (Spearman's coefficient ρ = 0.89) and sensor response (0.96), rendering it a performance descriptor. At optimal composition, such sensors detected even the lowest formaldehyde levels of 3 parts-per-billion (ppb) at 75°C, superior to state-of-the-art sensors. Also, selectivity to other aldehydes, ketones, alcohols, and inorganic compounds, robustness to humidity and stable performance over 4 weeks are achieved, rendering such sensors promising as gas detectors in health monitoring, air and food quality control.
|
Dec 2023
|
|
B18-Core EXAFS
|
Xuze
Guan
,
Hiroyuki
Asakura
,
Rong
Han
,
Siyuan
Xu
,
Hao-Xin
Liu
,
Lu
Chen
,
Zhangyi
Yao
,
Jay Hon Cheung
Yan
,
Tsunehiro
Tanaka
,
Yuzheng
Guo
,
Chun-Jiang
Jia
,
Feng Ryan
Wang
Diamond Proposal Number(s):
[23759, 24450, 14239]
Open Access
Abstract: The selective catalytic oxidation of NH3 (NH3–SCO) to N2 is an important reaction for the treatment of diesel engine exhaust. Co3O4 has the highest activity among non-noble metals but suffers from N2O release. Such N2O emissions have recently been regulated due to having a 300× higher greenhouse gas effect than CO2. Here, we design CuO-supported Co3O4 as a cascade catalyst for the selective oxidation of NH3 to N2. The NH3–SCO reaction on CuO–Co3O4 follows a de-N2O pathway. Co3O4 activates gaseous oxygen to form N2O. The high redox property of the CuO–Co3O4 interface promotes the breaking of the N–O bond in N2O to form N2. The addition of CuO–Co3O4 to the Pt–Al2O3 catalyst reduces the full NH3 conversion temperature by 50 K and improves the N2 selectivity by 20%. These findings provide a promising strategy for reducing N2O emissions and will contribute to the rational design and development of non-noble metal catalysts.
|
Oct 2023
|
|