B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
B18-Core EXAFS
|
Huihuang
Fang
,
Simson
Wu
,
Tugce
Ayvali
,
Jianwei
Zheng
,
Joshua
Fellowes
,
Ping-Luen
Ho
,
Kwan Chee
Leung
,
Alexander
Large
,
Georg
Held
,
Ryuichi
Kato
,
Kazu
Suenaga
,
Yves Ira A.
Reyes
,
Ho Viet
Thang
,
Hsin-Yi Tiffany
Chen
,
Shik Chi Edman
Tsang
Open Access
Abstract: Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.
|
Feb 2023
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
I11-High Resolution Powder Diffraction
|
Abstract: Barium zirconate perovskites have been systematically investigated as protonic supports for ruthenium nanoparticles in the Haber–Bosch ammonia synthesis reaction. A series of supports based on barium zirconate were synthesized, for which the B-site of the ABO3 perovskite was doped with different aliovalent acceptor cations and in varying ratios, resulting in varying proton conductivities and trapping behaviors. Crucially, we provide direct evidence of the importance of a hydrogen-migration mechanism for ammonia synthesis over these proton-conducting materials from the studies of reaction kinetics, in situ X-ray photoelectron spectroscopy, and neutron powder diffraction (NPD), which requires the proper balance of oxygen vacancy concentration (B-site doping), trapping-site concentration, and proton-hopping activation energy. We report evidence of a large dynamic coverage of OH groups on the support and the first visualization of both weak and strong proton trap sites within the perovskite lattice through the use of NPD.
|
Oct 2021
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Simson
Wu
,
Kai-Yu
Tseng
,
Ryuichi
Kato
,
Tai-Sing
Wu
,
Alexander
Large
,
Yung-Kang
Peng
,
Weikai
Xiang
,
Huihuang
Fang
,
Jiaying
Mo
,
Ian
Wilkinson
,
Yun-Liang
Soo
,
Georg
Held
,
Kazu
Suenaga
,
Tong
Li
,
Hsin-Yi Tiffany
Chen
,
Shik Chi Edman
Tsang
Abstract: Hydrogen spillover is the phenomenon where a hydrogen atom, generated from the dissociative chemisorption of dihydrogen on the surface of a metal species, migrates from the metal to the catalytic support. This phenomenon is regarded as a promising avenue for hydrogen storage, yet the atomic mechanism for how the hydrogen atom can be transferred to the support has remained controversial for decades. As a result, the development of catalytic support for such a purpose is only limited to typical reducible oxide materials. Herein, by using a combination of in situ spectroscopic and imaging technique, we are able to visualize and observe the atomic pathway for which hydrogen travels via a frustrated Lewis pair that has been constructed on a nonreducible metal oxide. The interchangeable status between the hydrogen, proton, and hydride is carefully characterized and demonstrated. It is envisaged that this study has opened up new design criteria for hydrogen storage material.
|
May 2021
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Jianwei
Zheng
,
Lilin
Lu
,
Konstantin
Lebedev
,
Simson
Wu
,
Pu
Zhao
,
Ian J.
Mcpherson
,
Tai-Sing
Wu
,
Ryuichi
Kato
,
Yiyang
Li
,
Ping-Luen
Ho
,
Guangchao
Li
,
Linlu
Bai
,
Jianhui
Sun
,
Dharmalingam
Prabhakaran
,
Robert A.
Taylor
,
Yun-Liang
Soo
,
Kazu
Suenaga
,
Shik Chi Edman
Tsang
Abstract: Current industrial production of ammonia from the Haber-Bosch process and its transport concomitantly produces a large quantity of CO2. Herein, we successfully synthesize inorganic-structure-based catalysts with [Fe-S2-Mo] motifs with a connecting structure similar to that of FeMoco (a cofactor of nitrogenase) by placing iron atoms on a single molecular layer of MoS2 at various loadings. This type of new catalytic material functionally mimics the nitrogenase to convert N2 to ammonia and hydrogen in water without adding any sacrificial agent under visible-light illumination. Using the elevated temperature boosts the ammonia yield and the energy efficiency by one order of magnitude. The solar-to-NH3 energy-conversion efficiency can be up to 0.24% at 270°C, which is the highest efficiency among all reported photocatalytic systems. This method of ammonia production and the photocatalytic materials may open up an exciting possibility for the decentralization of ammonia production for fertilizer provision to local farmlands using solar illumination.
|
Apr 2021
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Pu
Zhao
,
Lin
Ye
,
Guangchao
Li
,
Chen
Huang
,
Simson
Wu
,
Ping-Luen
Ho
,
Haokun
Wang
,
Tatchamapan
Yoskamtorn
,
Denis
Sheptyakov
,
Giannantonio
Cibin
,
Angus I.
Kirkland
,
Chiu C.
Tang
,
Anmin
Zheng
,
Wenjuan
Xue
,
Donghai
Mei
,
Kongkiat
Suriye
,
Shik Chi Edman
Tsang
Abstract: Synthesizing atomically dispersed synergistic active pairs is crucial yet challenging in developing highly active heterogeneous catalysts for various industrially important reactions. Here, a single molecular Re species is immobilized on the inner surface of a Y zeolite with Brønsted acid sites (BASs) within atomic proximity to form Re OMS–BAS active pairs for the efficient catalysis of olefin metathesis reactions (OMS: olefin metathesis site). The synergy within the active pairs is revealed by studying the coadsorption geometry of the olefin substrates over the active pairs by synchrotron X-ray and neutron powder diffraction. It is shown that the BAS not only facilitates olefin adsorption but also aligns the olefin molecule to the Re OMS for efficient intermediate formation. Consequently, for the cross-metathesis of ethene and trans-2-butene to propene, this catalyst shows high activity under mild reaction conditions without observable deactivation. The catalyst outperforms not only traditional ReOx-based catalysts but also the best industrially applicable WOx-based catalyst thus far that we discovered previously. The concept of using two isolated active sites of different functionalities within atomic proximity in a confined cavity can provide opportunities for designing synergistically catalytic materials.
|
Mar 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[20856]
Open Access
Abstract: The catalytic synthesis of NH3 from the thermodynamically challenging N2 reduction reaction under mild conditions is currently a significant problem for scientists. Accordingly, herein, we report the development of a nitrogenase-inspired inorganic-based chalcogenide system for the efficient electrochemical conversion of N2 to NH3, which is comprised of the basic structure of [Fe–S2–Mo]. This material showed high activity of 8.7 mgNH3 mgFe−1 h−1 (24 μgNH3 cm−2 h−1) with an excellent faradaic efficiency of 27% for the conversion of N2 to NH3 in aqueous medium. It was demonstrated that the Fe1 single atom on [Fe–S2–Mo] under the optimal negative potential favors the reduction of N2 to NH3 over the competitive proton reduction to H2. Operando X-ray absorption and simulations combined with theoretical DFT calculations provided the first and important insights on the particular electron-mediating and catalytic roles of the [Fe–S2–Mo] motifs and Fe1, respectively, on this two-dimensional (2D) molecular layer slab.
|
Jan 2021
|
|
I11-High Resolution Powder Diffraction
|
Wei-Che
Lin
,
Simson
Wu
,
Guangchao
Li
,
Ping-Luen
Ho
,
Yichen
Ye
,
Pu
Zhao
,
Sarah
Day
,
Chiu
Tang
,
Wei
Chen
,
Anmin
Zheng
,
Benedict T. W.
Lo
,
Shik Chi Edman
Tsang
Diamond Proposal Number(s):
[16358]
Open Access
Abstract: Catalytic conversion of methanol to aromatics and hydrocarbons is regarded as a key alternative technology to oil processing. Although the inclusion of foreign metal species in H-ZSM-5 containing Brønsted acid site (BAS) is commonly found to enhance product yields, the nature of catalytically active sites and the rationalization for catalytic performance still remain obscure. Herein, by acquiring comparable structural parameters by both X-ray and neutron powder diffractions over a number of metal-modified ZSM-5 zeolites, it is demonstrated for the first time that active pairs of metal site-BAS within molecular distance is created when single and isolated transition metal cation is ion-exchanged with the zeolites. According to our DFT model, this could lead to the initial heterolytic cleavage of small molecules such as water and methanol by the pair with subsequent reactions to form products at high selectivity as that observed experimentally. It may account for their active and selective catalytic routes of small molecule activations.
|
Oct 2020
|
|
I11-High Resolution Powder Diffraction
|
Qi
Xue
,
Yi
Xie
,
Simson
Wu
,
Tai-Sing
Wu
,
Yun-Liang
Soo
,
Sarah
Day
,
Chiu C.
Tang
,
Ho W.
Man
,
Sha T.
Yuen
,
Kwok-Yin
Wong
,
Yin
Wang
,
Benedict T. W.
Lo
,
Shik C. E.
Tsang
Diamond Proposal Number(s):
[23230]
Abstract: We investigate the geometric and electronic properties of single-atom catalysts (SACs) within metal–organic frameworks (MOFs) with respect to electrocatalytic CO2 reduction as a model reaction. A series of mid-to-late 3d transition metals have been immobilised within the microporous cavity of UiO-66-NH2. By employing Rietveld refinement of new-generation synchrotron diffraction, we not only identified the crystallographic and atomic parameters of the SACs that are stabilised with a robust M⋯N(MOF) bonding of ca. 2.0 Å, but also elucidated the end-on coordination geometry with CO2. A volcano trend in the FEs of CO has been observed. In particular, the confinement effect within the rigid MOF can greatly facilitate redox hopping between the Cu SACs, rendering high FEs of CH4 and C2H4 at a current density of −100 mA cm−2. Although only demonstrated in selected SACs within UiO-66-NH2, this study sheds light on the rational engineering of molecular interactions(s) with SACs for the sustainable provision of fine chemicals.
|
Oct 2020
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Simson
Wu
,
Yung-Kang
Peng
,
Tianyi
Chen
,
Jiaying
Mo
,
Alex
Large
,
Ian
Mcpherson
,
Hung-Lung
Chou
,
Ian
Wilkinson
,
Federica
Venturini
,
David
Grinter
,
Pilar
Ferrer Escorihuela
,
Georg
Held
,
Shik Chi Edman
Tsang
Abstract: The increasing availability of low-cost and low pressure, renewable H2 from wind and solar means has triggered tremendous interest in developing low pressure ammonia synthesis with N2 as energy carrier as well as green fertilizer. As such Cs-promoted Ru/MgO catalysts used in Kellogg process show superiority to Fe-based catalysts at milder conditions, however, as known, the surface poisoning of Ru sites by competitive strong H2 dissociative adsorption limits the overall rate. It is demonstrated for the first time that the use of simple polar MgO(111) to replace non-polar MgO as support can significantly alleviate the hydrogen poisoning and facilitate an unprecedented ammonia production rate by its high intrinsic proton capture ability.
|
Apr 2020
|
|
B18-Core EXAFS
|
Abstract: The direct hydrogenation of CO2 to methanol has become a very active research field because CO2 can be prospectively recycled to mitigate greenhouse effect and store clean synthetic fuels. This reaction can be catalyzed by supported Cu catalysts and the catalysts display strong support or promoter effects. Sintering of Cu species accelerates the separation of Cu–oxide interfaces, reduces the active component, and diminishes the methanol selectivity. In this work, we report a Cu catalyst supported on La-modified SBA-15, where the Cu–LaOx interface is generated through the interaction of highly dispersed Cu nanoparticles with LaOx species bedded into the SBA-15 pore wall. The optimized Cu1La0.2/SBA-15 catalyst can achieve methanol selectivity up to 81.2% with no deterioration in activity over 100 h on stream compared with the La-free catalyst. A thorough study reveals that La species not only significantly improve the CO2 adsorption but also enhance Cu dispersion to produce well-dispersed active sites. The H/D exchange experiments show that the methanol synthesis displays a strong thermodynamic isotope effect and the Cu–LaOx interface plays a crucial role for the methanol synthesis rate in CO2/D2 feed. In situ DRIFTS studies reveal that *HCOO and *OCH3 species are the key intermediates formed during the activation of CO2 and methanol synthesis over the Cu1La0.2/SBA-15 catalyst.
|
Mar 2019
|
|