I15-1-X-ray Pair Distribution Function (XPDF)
|
Bikash Kumar
Shaw
,
Ashlea R.
Hughes
,
Maxime
Ducamp
,
Stephen
Moss
,
Anup
Debnath
,
Adam F.
Sapnik
,
Michael F.
Thorne
,
Lauren N.
Mchugh
,
Andrea
Pugliese
,
Dean S.
Keeble
,
Philip
Chater
,
Juan M.
Bermudez-Garcia
,
Xavier
Moya
,
Shyamal K.
Saha
,
David A.
Keen
,
François-Xavier
Coudert
,
Frédéric
Blanc
,
Thomas
Bennett
Diamond Proposal Number(s):
[20038]
Abstract: Several organic–inorganic hybrid materials from the metal–organic framework (MOF) family have been shown to form stable liquids at high temperatures. Quenching then results in the formation of melt-quenched MOF glasses that retain the three-dimensional coordination bonding of the crystalline phase. These hybrid glasses have intriguing properties and could find practical applications, yet the melt-quench phenomenon has so far remained limited to a few MOF structures. Here we turn to hybrid organic–inorganic perovskites—which occupy a prominent position within materials chemistry owing to their functional properties such as ion transport, photoconductivity, ferroelectricity and multiferroicity—and show that a series of dicyanamide-based hybrid organic–inorganic perovskites undergo melting. Our combined experimental–computational approach demonstrates that, on quenching, they form glasses that largely retain their solid-state inorganic–organic connectivity. The resulting materials show very low thermal conductivities (~0.2 W m−1 K−1), moderate electrical conductivities (10−3–10−5 S m−1) and polymer-like thermomechanical properties.
|
May 2021
|
|
E02-JEM ARM 300CF
I15-1-X-ray Pair Distribution Function (XPDF)
|
Jingwei
Hou
,
Christopher W.
Ashling
,
Sean M.
Collins
,
Andraž
Krajnc
,
Chao
Zhou
,
Louis
Longley
,
Duncan N.
Johnstone
,
Philip
Chater
,
Shichun
Li
,
Marie-Vanessa
Coulet
,
Philip L.
Llewellyn
,
François-Xavier
Coudert
,
David
Keen
,
Paul A.
Midgley
,
Gregor
Mali
,
Vicki
Chen
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[171151, 19130, 16983]
Open Access
Abstract: The majority of research into metal-organic frameworks (MOFs) focuses on their crystalline nature. Recent research has revealed solid-liquid transitions within the family, which we use here to create a class of functional, stable and porous composite materials. Described herein is the design, synthesis, and characterisation of MOF crystal-glass composites, formed by dispersing crystalline MOFs within a MOF-glass matrix. The coordinative bonding and chemical structure of a MIL-53 crystalline phase are preserved within the ZIF-62 glass matrix. Whilst separated phases, the interfacial interactions between the closely contacted microdomains improve the mechanical properties of the composite glass. More significantly, the high temperature open pore phase of MIL-53, which spontaneously transforms to a narrow pore upon cooling in the presence of water, is stabilised at room temperature in the crystal-glass composite. This leads to a significant improvement of CO2 adsorption capacity.
|
Jun 2019
|
|
I15-Extreme Conditions
|
Remo N.
Widmer
,
Giulio I.
Lampronti
,
Siwar
Chibani
,
Craig
Wilson
,
Simone
Anzellini
,
Stefan
Farsang
,
Annette K.
Kleppe
,
Nicola P. M.
Casati
,
Simon
Macleod
,
Simon A. T.
Redfern
,
François-Xavier
Coudert
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[19046]
Open Access
Abstract: We present an in-situ powder X-ray diffraction study on the phase stability and polymorphism of the metal-organic framework ZIF-4, Zn(Imidazolate)2, at simultaneous high-pressure and high-temperature, up to 8 GPa and 600 °C. The resulting pressure-temperature phase diagram reveals four, previously unknown, high-pressure-temperature ZIF phases. The crystal structures of two new phases – ZIF-4-cp-II and ZIF-hPT-II – were solved by powder diffraction methods. The total energy of ZIF-4-cp-II was evaluated using density functional theory calculations and was found to lie in between that of ZIF-4 and the most thermodynamically stable polymorph, ZIF-zni. ZIF-hPT-II was found to possess a doubly-interpenetrated diamondoid-topology and is isostructural with previously reported Cd(Imidazolate)2 and Hg(Imidazolate)2 phases. This phase exhibited extreme resistance to both temperature and pressure. The other two new phases could be assigned with a unit cell and space group, though their structures remain unknown. The pressure-temperature phase diagram of ZIF-4 is strikingly complicated when compared with that of the previously investigated, closely related ZIF-62, and demonstrates the ability to traverse complex energy landscapes of metal-organic systems using the combined application of pressure and temperature.
|
May 2019
|
|
I15-Extreme Conditions
|
Remo N.
Widmer
,
Giulio I.
Lampronti
,
Simone
Anzellini
,
Romain
Gaillac
,
Stefan
Farsang
,
Chao
Zhou
,
Ana M.
Belenguer
,
Craig
Wilson
,
Hannah
Palmer
,
Annette K.
Kleppe
,
Michael T.
Wharmby
,
Xiao
Yu
,
Seth M.
Cohen
,
Shane G.
Telfer
,
Simon A. T.
Redfern
,
François-Xavier
Coudert
,
Simon
Macleod
,
Thomas
Bennett
Diamond Proposal Number(s):
[16133, 19046]
Abstract: Metal–organic frameworks (MOFs) are microporous materials with huge potential for chemical processes. Structural collapse at high pressure, and transitions to liquid states at high temperature, have recently been observed in the zeolitic imidazolate framework (ZIF) family of MOFs. Here, we show that simultaneous high-pressure and high-temperature conditions result in complex behaviour in ZIF-62 and ZIF-4, with distinct high- and low-density amorphous phases occurring over different regions of the pressure–temperature phase diagram. In situ powder X-ray diffraction, Raman spectroscopy and optical microscopy reveal that the stability of the liquid MOF state expands substantially towards lower temperatures at intermediate, industrially achievable pressures and first-principles molecular dynamics show that softening of the framework coordination with pressure makes melting thermodynamically easier. Furthermore, the MOF glass formed by melt quenching the high-temperature liquid possesses permanent, accessible porosity. Our results thus imply a route to the synthesis of functional MOF glasses at low temperatures, avoiding decomposition on heating at ambient pressure.
|
Mar 2019
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[15676]
Abstract: Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.
|
Oct 2017
|
|
I15-Extreme Conditions
|
Abstract: The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom—namely, the relative vertical shifts of neighbouring chains—are mathematically equivalent to the phase angles of rotating planar (‘XY’) spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets—including collective spin-vortices of relevance to data storage applications—are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible ‘toy’ spin models and also how the theoretical understanding of those models allows control over collective (‘emergent’) phenomena in supramolecular systems.
|
May 2016
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[11622]
Open Access
Abstract: Two metal–organic framework materials, MFM-130 and MFM-131 (MFM = Manchester Framework Material), have been synthesized using two oligoparaxylene (OPX) tetracarboxylate linkers containing four and five aromatic rings, respectively. Both fof-type non-interpenetrated networks contain Kagomé lattice layers comprising [Cu2(COO)4] paddlewheel units and isophthalates, which are pillared by the OPX linkers. Desolvated MFM-130, MFM-130a, shows permanent porosity (BET surface area of 2173 m2/g, pore volume of 1.0 cm3/g), high H2 storage capacity at 77 K (5.3 wt% at 20 bar and 2.2 wt% at 1 bar), and a higher CH4 adsorption uptake (163 cm3(STP)/cm3 (35 bar and 298 K)) compared with its structural analogue, NOTT-103. MFM-130a also shows impressive selective adsorption of C2H2, C2H4, and C2H6 over CH4 at room temperature, indicating its potential for separation of C2 hydrocarbons from CH4. The single-crystal structure of MFM-131 confirms that the methyl substituents of the paraxylene units block the windows in the Kagomé lattice layer of the framework, effectively inhibiting network interpenetration in MFM-131. This situation is to be contrasted with that of the doubly interpenetrated oligophenylene analogue, NOTT-104. Calculation of the mechanical properties of these two MOFs confirms and explains the instability of MFM-131 upon desolvation in contrast to the behavior of MFM-130. The incorporation of paraxylene units, therefore, provides an efficient method for preventing network interpenetration as well as accessing new functional materials with modified and selective sorption properties for gas substrates.
|
Mar 2016
|
|
I19-Small Molecule Single Crystal Diffraction
|
Claire
Hobday
,
Ross James
Marshall
,
Colin F.
Murphie
,
Jorge
Sotelo
,
Tom
Richards
,
Dave
Allan
,
Tina
Düren
,
François-Xavier
Coudert
,
Ross
Forgan
,
Carole A.
Morrison
,
Stephen
Moggach
,
Thomas
Bennett
Open Access
Abstract: Whilst many metal–organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4(bpdc)6], bpdc: 4,4′-biphenyl dicarboxylate) and UiO-abdc ([Zr6O4(OH)4(abdc)6], abdc: 4,4′-azobenzene dicarboxylate) by single-crystal nanoindentation, high-pressure X-ray diffraction, density functional theory calculations, and first-principles molecular dynamics. On increasing pressure, both UiO-67 and UiO-abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo-linker of UiO-abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO-67, characterized by a large elastic modulus. The use of non-linear linkers in the synthesis of UiO-MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range.
|
Jan 2016
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[9940]
Abstract: Thermally-densified hafnium terephthalate UiO-66(Hf) is shown to exhibit the strongest isotropic negative thermal expansion (NTE) effect yet reported for a metal–organic framework (MOF). Incorporation of correlated vacancy defects within the framework affects both the extent of thermal densification and the magnitude of NTE observed in the densified product. We thus demonstrate that defect inclusion can be used to tune systematically the physical behaviour of a MOF.
|
Apr 2015
|
|
I15-Extreme Conditions
|
Diamond Proposal Number(s):
[5052]
Abstract: Throughout much of condensed matter science, correlated disorder is a key to material function. While structural and compositional defects are known to exist within a variety of metal–organic frameworks (MOFs), the prevailing understanding is that these defects are only ever included in a random manner. Here we show—using a combination of diffuse scattering, electron microscopy, anomalous X-ray scattering and pair distribution function measurements—that correlations between defects can in fact be introduced and controlled within a hafnium terephthalate MOF. The nanoscale defect structures that emerge are an analogue of correlated Schottky vacancies in rocksalt-structured transition metal monoxides and have implications for storage, transport, optical and mechanical responses. Our results suggest how the diffraction behaviour of some MOFs might be reinterpreted, and establish a strategy of exploiting correlated nanoscale disorder as a targetable and desirable motif in MOF design.
|
Jun 2014
|
|