I24-Microfocus Macromolecular Crystallography
|
Richard J.
Gildea
,
James
Beilsten-Edmands
,
Danny
Axford
,
Sam
Horrell
,
Pierre
Aller
,
James
Sandy
,
Juan
Sanchez-Weatherby
,
C. David
Owen
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Robin L.
Owen
,
Martin A.
Walsh
,
Graeme
Winter
Diamond Proposal Number(s):
[26986, 27088]
Open Access
Abstract: In macromolecular crystallography, radiation damage limits the amount of data that can be collected from a single crystal. It is often necessary to merge data sets from multiple crystals; for example, small-wedge data collections from micro-crystals, in situ room-temperature data collections and data collection from membrane proteins in lipidic mesophases. Whilst the indexing and integration of individual data sets may be relatively straightforward with existing software, merging multiple data sets from small wedges presents new challenges. The identification of a consensus symmetry can be problematic, particularly in the presence of a potential indexing ambiguity. Furthermore, the presence of non-isomorphous or poor-quality data sets may reduce the overall quality of the final merged data set. To facilitate and help to optimize the scaling and merging of multiple data sets, a new program, xia2.multiplex, has been developed which takes data sets individually integrated with DIALS and performs symmetry analysis, scaling and merging of multi-crystal data sets. xia2.multiplex also performs analysis of various pathologies that typically affect multi-crystal data sets, including non-isomorphism, radiation damage and preferential orientation. After the description of a number of use cases, the benefit of xia2.multiplex is demonstrated within a wider autoprocessing framework in facilitating a multi-crystal experiment collected as part of in situ room-temperature fragment-screening experiments on the SARS-CoV-2 main protease.
|
Jun 2022
|
|
|
Tristan I.
Croll
,
Kay
Diederichs
,
Florens
Fischer
,
Cameron D.
Fyfe
,
Yunyun
Gao
,
Sam
Horrell
,
Agnel Praveen
Joseph
,
Luise
Kandler
,
Oliver
Kippes
,
Ferdinand
Kirsten
,
Konstantin
Müller
,
Kristopher
Nolte
,
Alexander M.
Payne
,
Matthew
Reeves
,
Jane S.
Richardson
,
Gianluca
Santoni
,
Sabrina
Stäb
,
Dale E.
Tronrud
,
Lea C.
Von Soosten
,
Christopher J.
Williams
,
Andrea
Thorn
Abstract: Structural biology plays a crucial role in the fight against COVID-19, permitting us to ‘see’ and understand SARS-CoV-2. However, the macromolecular structures of SARS-CoV-2 proteins that were solved with great speed and urgency can contain errors that may hinder drug design. The Coronavirus Structural Task Force has been working behind the scenes to evaluate and improve these structures, making the results freely available at https://insidecorona.net/.
|
May 2021
|
|
|
Jose Ramon
Macias
,
Ruben
Sanchez-Garcia
,
Pablo
Conesa
,
Erney
Ramirez-Aportela
,
Marta
Martinez Gonzalez
,
Carlos
Wert-Carvajal
,
Alberto M.
Parra-Perez
,
Joan
Segura Mora
,
Sam
Horrell
,
Andrea
Thorn
,
Carlos O. S.
Sorzano
,
Jose Maria
Carazo
Open Access
Abstract: The web platform 3DBionotes-WS integrates multiple Web Services and an interactive Web Viewer to provide a unified environment in which biological annotations can be analyzed in their structural context. Since the COVID-19 outbreak, new structural data from many viral proteins have been provided at a very fast pace. This effort includes many cryogenic Electron Microscopy (cryo-EM) studies, together with more traditional ones (X-rays, NMR), using several modeling approaches and complemented with structural predictions. At the same time, a plethora of new genomics and interactomics information (including fragment screening and structure-based virtual screening efforts) have been made available from different servers. In this context we have developed 3DBionotes-COVID-19 as an answer to: (1) The need to explore multi-omics data in a unified context with a special focus on structural information and (2) the drive to incorporate quality measurements, especially in the form of advanced validation metrics for cryogenic Electron Microscopy.
|
May 2021
|
|
I24-Microfocus Macromolecular Crystallography
Data acquisition
|
Open Access
Abstract: Serial data collection is a relatively new technique for synchrotron users. A user manual for fixed target data collection at I24, Diamond Light Source is presented with detailed step-by-step instructions, figures, and videos for smooth data collection.
|
Feb 2021
|
|
I24-Microfocus Macromolecular Crystallography
|
Sam
Horrell
,
Demet
Kekilli
,
Kakali
Sen
,
Robin L.
Owen
,
Florian S. N.
Dworkowski
,
Svetlana V.
Antonyuk
,
Thomas W.
Keal
,
Chin W.
Yong
,
Robert R.
Eady
,
S. Samar
Hasnain
,
Richard W.
Strange
,
Mike
Hough
Diamond Proposal Number(s):
[11175]
Open Access
Abstract: High-resolution crystal structures of enzymes in relevant redox states have transformed our understanding of enzyme catalysis. Recent developments have demonstrated that X-rays can be used, via the generation of solvated electrons, to drive reactions in crystals at cryogenic temperatures (100 K) to generate `structural movies' of enzyme reactions. However, a serious limitation at these temperatures is that protein conformational motion can be significantly supressed. Here, the recently developed MSOX (multiple serial structures from one crystal) approach has been applied to nitrite-bound copper nitrite reductase at room temperature and at 190 K, close to the glass transition. During both series of multiple structures, nitrite was initially observed in a `top-hat' geometry, which was rapidly transformed to a `side-on' configuration before conversion to side-on NO, followed by dissociation of NO and substitution by water to reform the resting state. Density functional theory calculations indicate that the top-hat orientation corresponds to the oxidized type 2 copper site, while the side-on orientation is consistent with the reduced state. It is demonstrated that substrate-to-product conversion within the crystal occurs at a lower radiation dose at 190 K, allowing more of the enzyme catalytic cycle to be captured at high resolution than in the previous 100 K experiment. At room temperature the reaction was very rapid, but it remained possible to generate and characterize several structural states. These experiments open up the possibility of obtaining MSOX structural movies at multiple temperatures (MSOX-VT), providing an unparallelled level of structural information during catalysis for redox enzymes.
|
May 2018
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[13467]
Open Access
Abstract: Microbial nitrite reductases are denitrifying enzymes that are a major component of the global nitrogen cycle. Multiple structures measured from one crystal (MSOX data) of copper nitrite reductase at 240 K, together with molecular-dynamics simulations, have revealed protein dynamics at the type 2 copper site that are significant for its catalytic properties and for the entry and exit of solvent or ligands to and from the active site. Molecular-dynamics simulations were performed using different protonation states of the key catalytic residues (AspCAT and HisCAT) involved in the nitrite-reduction mechanism of this enzyme. Taken together, the crystal structures and simulations show that the AspCAT protonation state strongly influences the active-site solvent accessibility, while the dynamics of the active-site `capping residue' (IleCAT), a determinant of ligand binding, are influenced both by temperature and by the protonation state of AspCAT. A previously unobserved conformation of IleCAT is seen in the elevated temperature series compared with 100 K structures. DFT calculations also show that the loss of a bound water ligand at the active site during the MSOX series is consistent with reduction of the type 2 Cu atom.
|
Jul 2017
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[11175, 8663, 8889]
Open Access
Abstract: The bacterial second messenger cyclic di-3′,5′-guanosine monophosphate (c-di-GMP) is a key regulator of bacterial motility and virulence. As high levels of c-di-GMP are associated with the biofilm lifestyle, c-di-GMP hydrolysing phosphodiesterases (PDEs) have been identified as key targets to aid development of novel strategies to treat chronic infection by exploiting biofilm dispersal. We have studied the EAL signature motif-containing phosphodiesterase domains from the Pseudomonas aeruginosa proteins PA3825 (PA3825EAL) and PA1727 (MucREAL). Different dimerisation interfaces allow us to identify interface independent principles of enzyme regulation. Unlike previously characterised two-metal binding EAL-phosphodiesterases, PA3825EAL in complex with pGpG provides a model for a third metal site. The third metal is positioned to stabilise the negative charge of the 5′-phosphate, and thus three metals could be required for catalysis in analogy to other nucleases. This newly uncovered variation in metal coordination may provide a further level of bacterial PDE regulation.
|
Feb 2017
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[11740]
Open Access
Abstract: Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07–1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a `catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.
|
Jul 2016
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Abstract: Since its first use to solve the structure of sodium chloride in 1915 X-ray crystallography has developed significantly to become the premier technique for obtaining 3D structural information of small molecules and macromolecules alike. As the technique continues to develop and focus its attention on weak diffraction from the likes of micro-crystals and poorly packed crystals of membrane proteins and large protein complexes; as well as ultra-high resolution data and weak anomalous signal from native atoms, data quality is becoming more and more important. Data quality is particularly important in the wake of long wavelength macromolecular crystallography (MX) for phasing using anomalous signal from native sulphur and phosphorous atoms in proteins and DNA. This thesis first investigated the use of a new sample handling technique using a humidity controlled stream to preserve macromolecular crystals while excess surrounding solvent is removed (Chapter 2). Following the successful development of this technique the effects of excess surrounding solvent on data quality was assessed when collecting at standard MX X-ray wavelengths (~ 1 Å) and longer X-ray wavelengths (~ 2 Å). Datasets were collected from large populations of control and test crystals at standard and longer wavelengths to allow robust statistical methods to be applied; a practice not widely adopted in method development studies in X-ray crystallography. This made it possible to assess the small differences in data quality in the presence and absence of excess surrounding solvent. The effects of surrounding solvent at longer wavelengths appear to be protein dependent with some proteins tested showing no significant difference and others a significant decrease in data quality at longer wavelengths (Chapter 3). Originally this project aimed to use the new long wavelength in-vacuum MX beamline, I23, at Diamond Light Source UK to carry out phasing experiments using native sulphurs for structure solution. However, the considerable complexity involved in developing in-vacuum MX meant these experiments could not be carried out during the time frame of this thesis. Chapters 4 and 5 outline the production of a novel cancer protein (cancerous inhibitor of protein phosphatase 2A) and two protein targets from the Achromobacter xylosoxidans (Ax) genome intended for sulphur single wavelength anomalous dispersion phasing experiments on I23. Of these proteins the structure of Ax-α/β hydrolase was solved by conventional methods, the structure of which is discussed in Chapter 5. Of the protein crystals used in long wavelength data quality experiments in Chapter 3 the molecular biology of PA3825-EAL, a biofilm regulating protein essential to the swarming ability of Pseudomonas aeruginosa, was investigated further. The crystal structure of PA3825-EAL was solved in the resting, substrate bound and product bound states to high resolution. Comparison of the crystal structures of monomeric and dimeric PA3825-EAL with the inactive dimeric structure of MucR-EAL suggests dimerisation via helix 8 plays a role in inhibition of EAL domains. Prior to this, dimerisation was thought to be an activating factor in EAL domains. The product bound state of PA3825-EAL showed the presence of a previously unreported third metal binding site which may form an essential component of the reaction mechanism of EAL domains. Inability of MucR-EAL to incorporate this third metal due to dimerisation may explain the lack of activity despite possessing the conserved catalytic residues necessary. The fast detector technology and improvements in automated data processing software that allowed diffraction data for large populations of crystals to be collected in Chapters 2 and 3 have also been applied to development of a serial data collection technique.
|
Nov 2015
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Wes
Armour
,
Danny
Axford
,
Mark
Basham
,
Thomas
Connolley
,
David R.
Hall
,
Sam
Horrell
,
Katherine
Mcauley
,
Vitaliy
Mykhaylyk
,
Armin
Wagner
,
Gwyndaf
Evans
,
Anna
Warren
Open Access
Abstract: The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.
|
Jul 2013
|
|