I06-Nanoscience (XPEEM)
|
Diamond Proposal Number(s):
[35404]
Open Access
Abstract: Antiferromagnets (AFs) are characterized by spin structures that are resistant to external magnetic fields, rendering them ideal for persistent information storage but challenging to control. This study demonstrates that a thin ferromagnetic adlayer can serve as a magnetic ‘lever’ to provide a strong handle on the spin texture of an adjacent antiferromagnet. In bilayers composed of NiO(001) and Co, the expected exchange bias effect—a unidirectional shift in the Co hysteresis due to coupling with NiO—is notably absent. Instead, a strong interfacial coupling is observed, causing the NiO to partially follow the magnetization of Co under an applied magnetic field. Using x-ray magnetic linear dichroism, we detect an inversion of dichroism, indicating a reorientation of the Néel vector in NiO. X-ray spectromicroscopy imaging further reveals a direct correlation between ferromagnetic and antiferromagnetic domain structures. These findings are explained using a toy model that distinguishes between stable and unstable AF domains, highlighting the dynamic interplay between NiO and the Co adlayer in the presence of a magnetic field.
|
Jan 2025
|
|
|
Open Access
Abstract: Magnetic skyrmions are topologically protected magnetization vortices that form three-dimensional strings in chiral magnets. With the manipulation of skyrmions being key to their application in devices, the focus has been on their dynamics within the vortex plane, while the dynamical control of skyrmion strings remained uncharted territory. Here, we report the effective bending of three-dimensional skyrmion strings in the chiral magnet MnSi in orthogonal thermal gradients using small angle neutron scattering. This dynamical behavior is achieved by exploiting the temperature-dependent skyrmion Hall effect, which is unexpected in the framework of skyrmion dynamics. We thus provide experimental evidence for the existence of magnon friction, which was recently proposed to be a key ingredient for capturing skyrmion dynamics, requiring a modification of Thiele’s equation. Our work therefore suggests the existence of an extra degree of freedom for the manipulation of three-dimensional skyrmions.
|
Jun 2024
|
|
I10-Beamline for Advanced Dichroism - scattering
|
N.-J.
Steinke
,
S. L.
Zhang
,
P. J.
Baker
,
L. B.
Duffy
,
F.
Kronast
,
J.
Krieger
,
Z.
Salman
,
T.
Prokscha
,
A.
Suter
,
S.
Langridge
,
Gerrit
Van Der Laan
,
T.
Hesjedal
Diamond Proposal Number(s):
[11503]
Abstract: Chromium-doped
Sb
2
Te
3
is a magnetic topological insulator (MTI), which belongs to the
(
Sb
,
Bi
)
2
(
Se
,
Te
)
3
family. When doped with the transition metals V, Cr, and Mn this family displays long-range ferromagnetic order above liquid nitrogen temperature and is currently intensely explored for quantum device applications. Despite the large magnetic ordering temperature, the experimental observation of dissipationless electrical transport channels, i.e., the quantum anomalous Hall effect, is limited in these materials to temperatures below
≈
2
K. Inhomogeneities in the MTI have been identified as a major concern, affecting the coupling between the Dirac states and the magnetic dopants. Nevertheless, details on the local magnetic order in these materials are not well understood. Here, we report the study of the magnetic correlations in thin films using a combination of muon spin relaxation
(
μ
SR
)
, and magnetic soft x-ray spectroscopy and imaging.
μ
SR
provides two key quantities for understanding the microscopic magnetic behavior: The magnetic volume fraction, i.e., the percentage of the material that is ferromagnetically ordered, and the relaxation rate, which is sensitive to the magnetic static
(
≈
μ
s
)
and dynamic disorder. By choosing different implantation depths for the muons, one can further discriminate between near-surface and bulk properties. No evidence for a surface enhancement of the magnetic ordering is observed, but, instead, we find evidence of small magnetically ordered clusters in a paramagnetic background, which are coupled. The significant magnetic field shift that is present in all samples indicates a percolation transition that proceeds through the formation and growth of magnetically ordered spin clusters. We further find that fluctuations are present even at low temperatures, and that there appears to be a transition between superparamagnetism and superferromagnetism.
|
Dec 2022
|
|
I10-Beamline for Advanced Dichroism - scattering
|
Peng
Chen
,
Qi
Yao
,
Junqi
Xu
,
Qiang
Sun
,
Alexander J.
Grutter
,
Patrick
Quarterman
,
Purnima P.
Balakrishnan
,
Christy J.
Kinane
,
Andrew J.
Caruana
,
Sean
Langridge
,
Ang
Li
,
Barat
Achinuq
,
Emily
Heppell
,
Yuchen
Ji
,
Shanshan
Liu
,
Baoshan
Cui
,
Jiuming
Liu
,
Puyang
Huang
,
Zhongkai
Liu
,
Guoqiang
Yu
,
Faxian
Xiu
,
Thorsten
Hesjedal
,
Jin
Zou
,
Xiaodong
Han
,
Haijun
Zhang
,
Yumeng
Yang
,
Xufeng
Kou
Diamond Proposal Number(s):
[30262]
Abstract: The intrinsic magnetic topological insulator MnBi2Te4 (MBT) provides a platform for the creation of exotic quantum phenomena. Novel properties can be created by modification of the MnBi2Te4 framework, but the design of stable magnetic structures remains challenging. Here we report ferromagnet-intercalated MnBi2Te4 superlattices with tunable magnetic exchange interactions. Using molecular beam epitaxy, we intercalate ferromagnetic MnTe layers into MnBi2Te4 to create [(MBT)(MnTe)m]N superlattices and examine their magnetic interaction properties using polarized neutron reflectometry and magnetoresistance measurements. Incorporation of the ferromagnetic spacer tunes the antiferromagnetic interlayer coupling of the MnBi2Te4 layers through the exchange-spring effect at MnBi2Te4/MnTe hetero-interfaces. The MnTe thickness can be used to modulate the relative strengths of the ferromagnetic and antiferromagnetic order, and the superlattice periodicity can tailor the spin configurations of the synthesized multilayers.
|
Dec 2022
|
|
I06-Nanoscience (XPEEM)
|
G.
Awana
,
R.
Fujita
,
A.
Frisk
,
P.
Chen
,
Q.
Yao
,
A. J.
Caruana
,
C. J.
Kinane
,
N.-J.
Steinke
,
S.
Langridge
,
P.
Olalde-Velasco
,
S. S.
Dhesi
,
G.
Van Der Laan
,
X. F.
Kou
,
S. L.
Zhang
,
T.
Hesjedal
,
D.
Backes
Diamond Proposal Number(s):
[23748]
Open Access
Abstract: An elegant approach to overcome the intrinsic limitations of magnetically doped topological insulators is to bring a topological insulator in direct contact with a magnetic material. The aspiration is to realize the quantum anomalous Hall effect at high temperatures where the symmetry-breaking magnetic field is provided by a proximity-induced magnetization at the interface. Hence, a detailed understanding of the interfacial magnetism in such heterostructures is crucial, yet its distinction from structural and magnetic background effects is a rather nontrivial task. Here, we combine several magnetic characterization techniques to investigate the magnetic ordering in
MnTe
/
Bi
2
Te
3
heterostructures. A magnetization profile of the layer stack is obtained using depth-sensitive polarized neutron reflectometry. The magnetic constituents are characterized in more detail using element-sensitive magnetic x-ray spectroscopy. Magnetotransport measurements provide additional information about the magnetic transitions. We find that the supposedly antiferromagnetic MnTe layer does not exhibit an x-ray magnetic linear dichroic signal, raising doubt that it is in its antiferromagnetic state. Instead, Mn seems to penetrate into the surface region of the
Bi
2
Te
3
layer. Furthermore, the interface between MnTe and
Bi
2
Te
3
is not abrupt, but extending over
∼
2.2
nm. These conditions are the likely reason that we do not observe proximity-induced magnetization at the interface. Our findings illustrate the importance of not solely relying on one single technique as proof for proximity-induced magnetism at interfaces. We demonstrate that a holistic, multitechnique approach is essential to gain a more complete picture of the magnetic structure in which the interface is embedded.
|
May 2022
|
|
B18-Core EXAFS
|
Rajesh
Tripathi
,
D. T.
Adroja
,
M. R.
Lees
,
A.
Sundaresan
,
S.
Langridge
,
A.
Bhattacharyya
,
V. K.
Anand
,
D. D.
Khalyavin
,
J.
Sannigrahi
,
G.
Cibin
,
A. D.
Hillier
,
R. I.
Smith
,
H. C.
Walker
,
Y.
Muro
,
T.
Takabatake
Diamond Proposal Number(s):
[17953]
Abstract: We report a systematic study of the
5
d
-electron-doped system
Ce
(
Fe
1
−
x
Ir
x
)
2
Al
10
(
0
≤
x
≤
0.15
)
. With increasing
x
, the orthorhombic
b
axis decreases slightly while accompanying changes in
a
and
c
leave the unit cell volume almost unchanged. Inelastic neutron scattering, along with thermal and transport measurements, reveal that for the Kondo semiconductor
CeFe
2
Al
10
, the low-temperature energy gap, which is proposed to be a consequence of strong
c
−
f
hybridization, is suppressed by a small amount of Ir substitution for Fe and that the system adopts a metallic ground state with an increase in the density of states at the Fermi level. The charge or transport gap collapses (at
x
=
0.04
) faster than the spin gap with Ir substitution. Magnetic susceptibility, heat capacity, and muon spin relaxation measurements demonstrate that the system undergoes long-range antiferromagnetic order below a Néel temperature
T
N
of 3.1(2) K for
x
=
0.15
. The ordered moment is estimated to be smaller than 0.07(1)
μ
B
/Ce, although the trivalent state of Ce is confirmed by Ce
L
3
-edge x-ray absorption near edge spectroscopy. It is suggested that the
c
−
f
hybridization gap, which plays an important role in the unusually high ordering temperatures observed in
Ce
T
2
Al
10
(
T
= Ru and Os), may not be necessary for the onset of magnetic order with a low
T
N
seen here in
Ce
(
Fe
1
−
x
Ir
x
)
2
Al
10
.
|
Oct 2021
|
|
|
Abstract: Magnetic topological insulators (TIs) are an ideal playground for the study of novel quantum phenomena
building on time-reversal symmetry-broken topological surface states. By combining different magnetic TIs in a heterostructure, their magnetic and electronic properties can be precisely tuned. Recently, we have combined high-moment Dy:Bi2Te3 with high transition temperature Cr:Sb2Te3 in a superlattice, and we found, using x-ray magnetic circular dichroism (XMCD), that long-range magnetic order can be introduced in the Dy:Bi2Te3 layers. Accompanying first-principles calculations indicated that the origin of the long-range magnetic order is a strong antiferromagnetic coupling between Dy and Cr magnetic moments at the interface extending over several layers. However, based on XMCD alone, which is either averaging over the entire thin-film stack or is surface-sensitive, this coupling scenario could not be fully confirmed. Here we use polarized neutron reflectometry, which is ideally suited for the detailed study of superlattices, to retrieve the magnetization in a layer- and interface resolved way. We find that the magnetization is, in contrast to similar recent studies, homogeneous throughout the individual layers, with no apparent interfacial effects. This finding demonstrates that heterostructure engineering is a powerful way of controlling the magnetic properties of entire layers, with the effects of coupling reaching beyond the interface region.
|
Aug 2019
|
|
|
L. B.
Duffy
,
N.-J.
Steinke
,
J. A.
Krieger
,
A. I.
Figueroa
,
K.
Kummer
,
T.
Lancaster
,
S. R.
Giblin
,
F. L.
Pratt
,
S. J.
Blundell
,
T.
Prokscha
,
A.
Suter
,
Sean
Langridge
,
V. N.
Strocov
,
Z.
Salman
,
G.
Van Der Laan
,
T.
Hesjedal
Abstract: Magnetic doping with transition metal ions is the most widely used approach to break time-reversal symmetry in a topological insulator (TI)—a prerequisite for unlocking the TI’s exotic potential. Recently, we reported the doping of Bi2Te3 thin films with rare-earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy-doped Bi2Te3 remained elusive.Here, we present an x-ray magnetic circular dichroism, polarized neutron reflectometry, muon-spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous, magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition-metal-doped layers. However, the introduction of some charge carriers by the Dy dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition-metal-doped topological insulators, and Dy doping should thus allow for improved TI quantum devices.
|
May 2018
|
|
I06-Nanoscience (XPEEM)
|
Diamond Proposal Number(s):
[1013]
Open Access
Abstract: The effects of high-temperature annealing on ferromagnetic Co-doped Indium Tin Oxide (ITO) thin films have been investigated using X-ray diffraction (XRD), magnetometry, and X-Ray Magnetic Circular Dichroism (XMCD). Following annealing, the magnetometry results indicate the formation of Co clusters with a significant increase in the saturation magnetization of the thin films arising from defects introduced during cluster formation. However, sum rule analysis of the element-specific XMCD results shows that the magnetic moment at the Co sites is reduced after annealing. The effects of annealing demonstrate that the ferromagnetism observed in the as-deposited Co-doped ITO films arises from intrinsic defects and cannot be related to the segregation of metallic Co clusters.
|
Apr 2017
|
|
I10-Beamline for Advanced Dichroism - scattering
|
Diamond Proposal Number(s):
[10197]
Abstract: We report on the crossover from the thermal to the athermal regime of an artificial spin ice formed from a square array of magnetic islands whose lateral size, 30 nm
×
70 nm, is small enough that they are dynamic at room temperature. We used resonant magnetic soft x-ray photon correlation spectroscopy as a method to observe the time-time correlations of the fluctuating magnetic configurations of spin ice during cooling, which are found to slow abruptly as a freezing temperature of
T
0
=
178
±
5
K is approached. This slowing is well described by a Vogel-Fulcher-Tammann law, implying that the frozen state is glassy, with the freezing temperature being commensurate with the strength of magnetostatic interaction energies in the array. The activation temperature,
T
A
=
40
±
10
K, is much less than that expected from a Stoner-Wohlfarth coherent rotation model. Zero-field-cooled/field-cooled magnetometry reveals a freeing up of fluctuations of states within islands above this temperature, caused by variation in the local anisotropy axes at the oxidised edges. This Vogel-Fulcher-Tammann behavior implies that the system enters a glassy state upon freezing, which is unexpected for a system with a well-defined ground state.
|
Mar 2017
|
|