I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Duncan E.
Scott
,
Nicola J.
Francis-Newton
,
May E.
Marsh
,
Anthony G.
Coyne
,
Gerhard
Fischer
,
Tommaso
Moschetti
,
Andrew R.
Bayly
,
Timothy D.
Sharpe
,
Kalina T.
Haas
,
Lorraine
Barber
,
Chiara R.
Valenzano
,
Rajavel
Srinivasan
,
David J.
Huggins
,
Miyoung
Lee
,
Amy
Emery
,
Bryn
Hardwick
,
Matthias
Ehebauer
,
Claudio
Dagostin
,
Alessandro
Esposito
,
Luca
Pellegrini
,
Trevor
Perrior
,
Grahame
Mckenzie
,
Tom L.
Blundell
,
Marko
Hyvonen
,
John
Skidmore
,
Ashok R.
Venkitaraman
,
Chris
Abell
Diamond Proposal Number(s):
[315, 7141]
Open Access
Abstract: BRCA2 controls RAD51 recombinase during homologous DNA recombination (HDR) through eight evolutionarily conserved BRC repeats, which individually engage RAD51 via the motif Phe-x-x-Ala. Using structure-guided molecular design, templated on a monomeric thermostable chimera between human RAD51 and archaeal RadA, we identify CAM833, a 529 Da orthosteric inhibitor of RAD51:BRC with a Kd of 366 nM. The quinoline of CAM833 occupies a hotspot, the Phe-binding pocket on RAD51 and the methyl of the substituted α-methylbenzyl group occupies the Ala-binding pocket. In cells, CAM833 diminishes formation of damage-induced RAD51 nuclear foci; inhibits RAD51 molecular clustering, suppressing extended RAD51 filament assembly; potentiates cytotoxicity by ionizing radiation, augmenting 4N cell-cycle arrest and apoptotic cell death and works with poly-ADP ribose polymerase (PARP)1 inhibitors to suppress growth in BRCA2-wildtype cells. Thus, chemical inhibition of the protein-protein interaction between BRCA2 and RAD51 disrupts HDR and potentiates DNA damage-induced cell death, with implications for cancer therapy.
|
Mar 2021
|
|
Krios II-Titan Krios II at Diamond
|
Diamond Proposal Number(s):
[17057]
Open Access
Abstract: Nonhomologous end joining (NHEJ) is a DNA repair mechanism that religates double‐strand DNA breaks to maintain genomic integrity during the entire cell cycle. The Ku70/80 complex recognizes DNA breaks and serves as an essential hub for recruitment of NHEJ components. Here, we describe intramolecular interactions of the Ku70 C‐terminal domain, known as the SAP domain. Using single‐particle cryo‐electron microscopy, mass spectrometric analysis of intermolecular cross‐linking and molecular modelling simulations, we captured variable positions of the SAP domain depending on DNA binding. The first position was localized at the DNA aperture in the Ku70/80 apo form but was not observed in the DNA‐bound state. The second position, which was observed in both apo and DNA‐bound states, was found below the DNA aperture, close to the helical arm of Ku70. The localization of the SAP domain in the DNA aperture suggests a function as a flexible entry gate for broken DNA.
|
Feb 2021
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
|
Vitor
Mendes
,
Simon R.
Green
,
Joanna C.
Evans
,
Jeannine
Hess
,
Michael
Blaszczyk
,
Christina
Spry
,
Owain
Bryant
,
James
Cory-Wright
,
Daniel S-H.
Chan
,
Pedro H. M.
Torres
,
Zhe
Wang
,
Navid
Nahiyaan
,
Sandra
O’neill
,
Sebastian
Damerow
,
John
Post
,
Tracy
Bayliss
,
Sasha L.
Lynch
,
Anthony G.
Coyne
,
Peter C.
Ray
,
Chris
Abell
,
Kyu Y.
Rhee
,
Helena I. M.
Boshoff
,
Clifton E.
Barry
,
Valerie
Mizrahi
,
Paul G.
Wyatt
,
Tom L.
Blundell
Diamond Proposal Number(s):
[9537, 14043, 18548]
Open Access
Abstract: Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.
|
Jan 2021
|
|
I03-Macromolecular Crystallography
|
João A.
Ribeiro
,
Alexander
Hammer
,
Gerardo A.
Libreros-Zúñiga
,
Sair M.
Chavez-Pacheco
,
Petros
Tyrakis
,
Gabriel S.
De Oliveira
,
Timothy
Kirkman
,
Jamal
El Bakali
,
Silvana A.
Rocco
,
Mauricio L.
Sforça
,
Roberto
Parise-Filho
,
Anthony G.
Coyne
,
Tom L.
Blundell
,
Chris
Abell
,
Marcio V. B.
Dias
Abstract: Dihydrofolate reductase (DHFR), a key enzyme involved in folate metabolism, is a widely explored target in the treatment of cancer, immune diseases, bacteria, and protozoa infections. Although several antifolates have proved successful in the treatment of infectious diseases, they have been underexplored to combat tuberculosis, despite the essentiality of M. tuberculosis DHFR (MtDHFR). Herein, we describe an integrated fragment-based drug discovery approach to target MtDHFR that has identified hits with scaffolds not yet explored in any previous drug design campaign for this enzyme. The application of a SAR by catalog strategy of an in house library for one of the identified fragments has led to a series of molecules that bind to MtDHFR with low micromolar affinities. Crystal structures of MtDHFR in complex with compounds of this series demonstrated a novel binding mode that considerably differs from other DHFR antifolates, thus opening perspectives for the development of relevant MtDHFR inhibitors.
|
Jul 2020
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Sherine E.
Thomas
,
Andrew J.
Whitehouse
,
Karen
Brown
,
Sophie
Burbaud
,
Juan m
Belardinelli
,
Jasper
Sangen
,
Ramanuj
Lahiri
,
Mark daben j.
Libardo
,
Pooja
Gupta
,
Sony
Malhotra
,
Helena I. M.
Boshoff
,
Mary
Jackson
,
Chris
Abell
,
Anthony g.
Coyne
,
Tom L.
Blundell
,
Rodrigo Andres
Floto
,
Vitor
Mendes
Diamond Proposal Number(s):
[9537, 14043, 18548]
Open Access
Abstract: Translational frameshift errors are often deleterious to the synthesis of functional proteins and could therefore be promoted therapeutically to kill bacteria. TrmD (tRNA-(N(1)G37) methyltransferase) is an essential tRNA modification enzyme in bacteria that prevents +1 errors in the reading frame during protein translation and represents an attractive potential target for the development of new antibiotics. Here, we describe the application of a structure-guided fragment-based drug discovery approach to the design of a new class of inhibitors against TrmD in Mycobacterium abscessus. Fragment library screening, followed by structure-guided chemical elaboration of hits, led to the rapid development of drug-like molecules with potent in vitro TrmD inhibitory activity. Several of these compounds exhibit activity against planktonic M. abscessus and M. tuberculosis as well as against intracellular M. abscessus and M. leprae, indicating their potential as the basis for a novel class of broad-spectrum mycobacterial drugs.
|
Jun 2020
|
|
I02-Macromolecular Crystallography
|
Takashi
Ochi
,
Valentina
Quarantotti
,
Huawen
Lin
,
Jerome
Jullien
,
Ivan
Rosa E Silva
,
Francesco
Boselli
,
Deepak D.
Barnabas
,
Christopher M.
Johnson
,
Stephen H.
Mclaughlin
,
Stefan M. V.
Freund
,
Andrew N.
Blackford
,
Yuu
Kimata
,
Raymond E.
Goldstein
,
Stephen P.
Jackson
,
Tom L.
Blundell
,
Susan K.
Dutcher
,
Fanni
Gergely
,
Mark
Van Breugel
Diamond Proposal Number(s):
[9537]
Open Access
Abstract: Centrioles are cylindrical assemblies whose peripheral microtubule array displays a 9-fold rotational symmetry that is established by the scaffolding protein SAS6. Centriole symmetry can be broken by centriole-associated structures, such as the striated fibers in Chlamydomonas that are important for ciliary function. The conserved protein CCDC61/VFL3 is involved in this process, but its exact role is unclear. Here, we show that CCDC61 is a paralog of SAS6. Crystal structures of CCDC61 demonstrate that it contains two homodimerization interfaces that are similar to those found in SAS6, but result in the formation of linear filaments rather than rings. Furthermore, we show that CCDC61 binds microtubules and that residues involved in CCDC61 microtubule binding are important for ciliary function in Chlamydomonas. Together, our findings suggest that CCDC61 and SAS6 functionally diverged from a common ancestor while retaining the ability to scaffold the assembly of basal body-associated structures or centrioles, respectively.
|
May 2020
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9537, 14043]
Open Access
Abstract: Tuberculosis (TB) remains a leading cause of mortality amongst infectious diseases worldwide. InhA, an enoyl ACP-reductase, has been the focus of numerous drug discovery efforts as this is the target of the first line pro-drug isoniazid. However, with resistance to this drug becoming more common the aim has been to find new clinical candidates that directly inhibit this enzyme and that do not require activation by the catalase peroxidase KatG, thus circumventing the majority of the resistance mechanisms. In this work, the screening and validation of a fragment library is described and development of the fragment hits using a fragment growing strategy was employed which led to the development InhA inhibitors with affinities of up to 250 nM.
|
Apr 2020
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14043]
Abstract: Inosine-5′-monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme involved in nucleotide biosynthesis. Because of its critical role in purine biosynthesis, IMPDH is a drug design target for immunosuppressive, anticancer, antiviral and antimicrobial chemotherapy. In this study, we use mass spectrometry and X-ray crystallography to show that the inhibitor 6-Cl-purine ribotide forms a covalent adduct with the Cys-341 residue of Mycobacterium thermoresistibile IMPDH.
|
Jan 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9007, 9537]
Open Access
Abstract: Trehalose is an essential disaccharide for mycobacteria and a key constituent of several cell wall glycolipids with fundamental roles in pathogenesis. Mycobacteria possess two pathways for trehalose biosynthesis. However, only the OtsAB pathway was found to be essential in Mycobacterium tuberculosis, with marked growth and virulence defects of OtsA mutants and strict essentiality of OtsB2. Here, we report the first mycobacterial OtsA structures from Mycobacterium thermoresistibile in both apo and ligand-bound forms. Structural information reveals three key residues in the mechanism of substrate preference that were further confirmed by site-directed mutagenesis. Additionally, we identify 2-oxoglutarate and 2-phosphoglycerate as allosteric regulators of OtsA. The structural analysis in this work strongly contributed to define the mechanisms for feedback inhibition, show different conformational states of the enzyme, and map a new allosteric site.
|
Dec 2019
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Andrew J.
Whitehouse
,
Sherine E.
Thomas
,
Karen P.
Brown
,
Alexander
Fanourakis
,
Daniel S.-H.
Chan
,
M. Daben J.
Libardo
,
Vitor
Mendes
,
Helena I. M.
Boshoff
,
R. Andres
Floto
,
Chris
Abell
,
Tom
Blundell
,
Anthony G.
Coyne
Diamond Proposal Number(s):
[9537, 14043, 18548]
Open Access
Abstract: Mycobacterium abscessus (Mab) is a rapidly growing species of multidrug-resistant nontuberculous mycobacteria that has emerged as a growing threat to individuals with cystic fibrosis and other pre-existing chronic lung diseases. Mab pulmonary infections are difficult, or sometimes impossible, to treat and result in accelerated lung function decline and premature death. There is therefore an urgent need to develop novel antibiotics with improved efficacy. tRNA (m1G37) methyltransferase (TrmD) is a promising target for novel antibiotics. It is essential in Mab and other mycobacteria, improving reading frame maintenance on the ribosome to prevent frameshift errors. In this work, a fragment-based approach was employed with the merging of two fragments bound to the active site, followed by structure-guided elaboration to design potent nanomolar inhibitors against Mab TrmD. Several of these compounds exhibit promising activity against mycobacterial species, including Mycobacterium tuberculosis and Mycobacterium leprae in addition to Mab, supporting the use of TrmD as a target for the development of antimycobacterial compounds.
|
Jul 2019
|
|