B22-Multimode InfraRed imaging And Microspectroscopy
|
Dukula
De Alwis Jayasinghe
,
Yinlin
Chen
,
Jiangnan
Li
,
Justyna M.
Rogacka
,
Meredydd
Kippax-Jones
,
Wanpeng
Lu
,
Sergey
Sapchenko
,
Jinyue
Yang
,
Sarayute
Chansai
,
Tianze
Zhou
,
Lixia
Guo
,
Yujie
Ma
,
Longzhang
Dong
,
Daniil
Polyukhov
,
Lutong
Shan
,
Yu
Han
,
Danielle
Crawshaw
,
Xiangdi
Zeng
,
Zhaodong
Zhu
,
Lewis
Hughes
,
Mark D.
Frogley
,
Pascal
Manuel
,
Svemir
Rudic
,
Yongqiang
Chen
,
Christopher
Hardacre
,
Martin
Schroeder
,
Sihai
Yang
Open Access
Abstract: Ammonia (NH3) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO2 each year. Efforts to produce green NH3 are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal–organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH3. Here, we address these challenges by developing a pore-expansion strategy utilizing the flexible phosphonate framework, STA-12(Ni), which shows exceptional stability and capture of NH3 at ppm levels at elevated temperatures (100–220 °C) even under humid conditions. A remarkable NH3 uptake of 4.76 mmol g–1 at 100 μbar (equivalent to 100 ppm) is observed, and in situ neutron powder diffraction, inelastic neutron scattering, and infrared microspectroscopy, coupled with modeling, reveal a pore expansion from triclinic to a rhombohedral structure on cooperative binding of NH3 to unsaturated Ni(II) sites and phosphonate groups. STA-12(Ni) can be readily engineered into pellets or monoliths without losing adsorption capacity, underscoring its practical potential.
|
Nov 2024
|
|
I19-Small Molecule Single Crystal Diffraction
|
Zi
Wang
,
Alena M.
Sheveleva
,
Jiangnan
Li
,
Zhengyang
Zhou
,
Sergei
Sapchenko
,
George
Whitehead
,
Mark R.
Warren
,
David
Collison
,
Junliang
Sun
,
Martin
Schroeder
,
Eric J. L.
Mcinnes
,
Sihai
Yang
,
Floriana
Tuna
Diamond Proposal Number(s):
[31627]
Open Access
Abstract: MFM-520(Zn) confines dimers of NO2 with a high adsorption of 4.52 mmol g−1 at 1 bar at 298 K. The synthesis and the incommensurate structure of Cu-doped MFM-520(Zn) are reported. The introduction of paramagnetic Cu2+ sites allows investigation of the electronic and geometric structure of metal site by in situ electron paramagnetic resonance (EPR) spectroscopy upon adsorption of NO2. By combining continuous wave and electron-nuclear double resonance spectroscopy, an unusual reverse Berry distorted coordination geometry of the Cu2+ centers is observed. Interestingly, Cu-doped MFM-520(Zn0.95Cu0.05) shows enhanced adsorption of NO2 of 5.02 mmol g−1 at 1 bar at 298 K. Whereas MFM-520(Zn) confines adsorbed NO2 as N2O4, the presence of monomeric NO2 at low temperature suggests that doping with Cu2+ centers into the framework plays an important role in tuning the dimerization of NO2 molecules in the pore via the formation of specific host-guest interactions.
|
Nov 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[22137, 30398]
Open Access
Abstract: Metal–organic framework (MOF) materials are attracting increasing interest in the field of electronics due to their structural diversity, intrinsic porosity, and designable host–guest interactions. Here, we report the dielectric properties of a series of robust materials, MFM-300(M) (M = Al, Sc, Cr, Fe, Ga, In), when exposed to different guest molecules. MFM-300(Fe) exhibits the most notable increase in dielectric constant to 35.3 ± 0.3 at 10 kHz upon adsorption of NH3. Structural analysis suggests that the electron delocalization induced by host–guest interactions between NH3 and the MOF host, as confirmed by neutron powder diffraction studies, leads to structural polarization, resulting in a high dielectric constant for NH3@MFM-300(Fe). This is further supported by ligand-to-metal charge-transfer transitions observed by solid-state UV/vis spectroscopy. The high detection sensitivity and stability to NH3 suggest that MFM-300(Fe) may act as a powerful dielectric-based sensor for NH3.
|
Oct 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Lixia
Guo
,
Joseph
Hurd
,
Meng
He
,
Wanpeng
Lu
,
Jiangnan
Li
,
Danielle
Crawshaw
,
Mengtian
Fan
,
Sergey A.
Sapchenko
,
Yinlin
Chen
,
Xiangdi
Zeng
,
Meredydd
Kippax-Jones
,
Wenyuan
Huang
,
Zhaodong
Zhu
,
Pascal
Manuel
,
Mark D.
Frogley
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: The development of stable sorbent materials to deliver reversible adsorption of ammonia (NH3) is a challenging task. Here, we report the efficient capture and storage of NH3 in a series of robust microporous aluminium-based metal-organic framework materials, namely MIL-160, CAU-10-H, Al-fum, and MIL-53(Al). In particular, MIL-160 shows high uptakes of NH3 of 4.8 and 12.8 mmol g−1 at both low and high pressure (0.001 and 1.0 bar, respectively) at 298 K. The combination of in situ neutron powder diffraction, synchrotron infrared micro-spectroscopy and solid-state nuclear magnetic resonance spectroscopy reveals the preferred adsorption domains of NH3 molecules in MIL-160, with H/D site-exchange between the host and guest and an unusual distortion of the local structure of [AlO6] moieties being observed. Dynamic breakthrough experiments confirm the excellent ability of MIL-160 to capture of NH3 with a dynamic uptake of 4.2 mmol g−1 at 1000 ppm. The combination of high porosity, pore aperture size and multiple binding sites promotes the significant binding affinity and capacity for NH3, which makes it a promising candidate for practical applications.
|
Mar 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I19-Small Molecule Single Crystal Diffraction
|
Weiyao
Li
,
Jiangnan
Li
,
Thien D.
Duong
,
Sergey A.
Sapchenko
,
Xue
Han
,
Jack D.
Humby
,
George F. S.
Whitehead
,
Inigo J.
Vitórica-Yrezábal
,
Ivan
Da Silva
,
Pascal
Manuel
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[28479, 23480]
Open Access
Abstract: The development of efficient sorbent materials for sulfur dioxide (SO2) is of key industrial interest. However, due to the corrosive nature of SO2, conventional porous materials often exhibit poor reversibility and limited uptake toward SO2 sorption. Here, we report high adsorption of SO2 in a series of Cu(II)-carboxylate-based metal–organic framework materials. We describe the impact of ligand functionalization and open metal sites on the uptake and reversibility of SO2 adsorption. Specifically, MFM-101 and MFM-190(F) show fully reversible SO2 adsorption with remarkable capacities of 18.7 and 18.3 mmol g–1, respectively, at 298 K and 1 bar; the former represents the highest reversible uptake of SO2 under ambient conditions among all porous solids reported to date. In situ neutron powder diffraction and synchrotron infrared microspectroscopy enable the direct visualization of binding domains of adsorbed SO2 molecules as well as host–guest binding dynamics. We have found that the combination of open Cu(II) sites and ligand functionalization, together with the size and geometry of metal–ligand cages, plays an integral role in the enhancement of SO2 binding.
|
Jul 2022
|
|
I11-High Resolution Powder Diffraction
|
Xi
Chen
,
Zhongyue
Zhang
,
Jin
Chen
,
Sergei
Sapchenko
,
Xue
Han
,
Ivan
Da Silva
,
Ming
Li
,
Inigo
Vitorica-Yrezabal
,
George
Whitehead
,
Chiu C.
Tang
,
Kunio
Awaga
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[22138]
Abstract: MFM-722(Pb)-DMA undergoes a single-crystal-to-single-crystal (SCSC) transformation to give MFM-722(Pb)-H2O via ligand substitution upon exposure to water vapour. In situ single crystal impedance spectroscopy reveals an increase in proton conductivity due to this structural transition, with MFM-722(Pb)-H2O showing a proton conductivity of 6.61×10-4 S cm-1 at 50 °C and 98% RH. The low activation energy (Ea = 0.21 eV) indicates that the proton conduction follows a Grotthuss mechanism.
|
Nov 2020
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Thien D.
Duong
,
Sergey A.
Sapchenko
,
Ivan
Da Silva
,
Harry G. W.
Godfrey
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Pascal
Manuel
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[14938]
Open Access
Abstract: Metal–organic frameworks (MOFs) functionalised with amine, amide and hydroxyl groups show great promise for CO2 binding due to their ability to form hydrogen bonds to CO2. Herein we report the adsorption and selectivity of CO2 in four iso-reticular MOFs adopting the NbO topology. Functionalisation of the parent MOF, MFM-102, with –NO2, –NH2 and alkyl groups leads to an enhancement of CO2 adsorption of up to 36% for the NO2-decorated MOF and with raised selectivity. MFM-102-NO2 shows the highest adsorption capacity for CO2 (184 cm3 g−1 at 273 K and 1.0 bar) within this series, comparable to the best-behaving iso-reticular MOFs. At 298 K and 1.0 bar, MFM-102-NO2 shows a CO2/CH4 selectivity of 5.0. In situ inelastic neutron scattering and synchrotron FT-IR micro-spectroscopy were employed to elucidate the host–guest interaction dynamics within CO2-loaded MFM-102-NO2. Neutron powder diffraction enabled the direct observation of the preferred binding domains in MFM-102-NO2, and, to the best of our knowledge, we report the first example of CO2 binding to a –NO2 group in a porous MOF. Synergistic effects between the –NO2 group and the open metal sites lead to optimal binding of CO2 molecules within MFM-102-NO2 via hydrogen bonding to C–H groups.
|
May 2020
|
|
I11-High Resolution Powder Diffraction
|
Xinran
Zhang
,
Ivan
Da Silva
,
Rodrigo
Fazzi
,
Alena M.
Sheveleva
,
Xue
Han
,
Ben F.
Spencer
,
Sergey A.
Sapchenko
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Ming
Li
,
Sihai
Yang
,
Martin
Schroder
Diamond Proposal Number(s):
[21079]
Open Access
Abstract: We report a comparative study of the binding of I2 (iodine) in a pair of redox-active metal–organic framework (MOF) materials, MFM-300(VIII) and its oxidized, deprotonated analogue, MFM-300(VIV). Adsorption of I2 in MFM-300(VIII) triggers a host-to-guest charge-transfer, accompanied by a partial (∼30%) oxidation of the VIII centers in the host framework and formation of I3– species residing in the MOF channels. Importantly, this charge-transfer induces a significant enhancement in the electrical conductivity (Δσ = 700000) of I2@MFM-300(VIII/IV) in comparison to MFM-300(VIII). In contrast, no host–guest charge-transfer or apparent change in the conductivity was observed upon adsorption of I2 in MFM-300(VIV). High-resolution synchrotron X-ray diffraction of I2@MFM-300(VIII/IV) confirms the first example of self-aggregation of adsorbed iodine species (I2 and I3–) into infinite helical chains within a MOF.
|
Sep 2019
|
|
I11-High Resolution Powder Diffraction
|
Sergey A.
Sapchenko
,
Marina O.
Barsukova
,
Rodion V.
Belosludov
,
Konstantin A.
Kovalenko
,
Denis G.
Samsonenko
,
Artem S.
Poryvaev
,
Alena M.
Sheveleva
,
Matvey V.
Fedin
,
Artem S.
Bogomyakov
,
Danil N.
Dybtsev
,
Martin
Schroeder
,
Vladimir P.
Fedin
Abstract: Two new isostructural microporous coordination frameworks [Mn3(Hpdc)2(pdc)2] (1) and [Mg3(Hpdc)2(pdc)2] (2) (pdc2– = pyridine-2,4-dicarboxylate) showing primitive cubic (pcu) topology have been prepared and characterized. The pore aperture of the channels is too narrow for the efficient adsorption of N2; however, both compounds demonstrate substantially higher uptake of CO2 (119.9 mL·g–1 for 1 and 102.5 mL·g–1 for 2 at 195 K, 1 bar). Despite of their structural similarities, 2 shows a typical reversible type I isotherm for adsorption/desorption of CO2, while 1 features a two-step adsorption process with a very broad hysteresis between the adsorption and desorption curves. This behavior can be explained by a combination of density functional theory calculations, sorption, and X-ray diffraction analysis and gives insights into the further development of new sorbents showing adsorption/desorption hysteresis.
|
May 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Xinran
Zhang
,
Ivan
Da Silva
,
Harry G. W.
Godfrey
,
Samantha K.
Callear
,
Sergey A.
Sapchenko
,
Yongqiang
Cheng
,
Inigo J.
Vitorica-Yrezabal
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Chiu C.
Tang
,
Carlotta
Giacobbe
,
Catherine
Dejoie
,
Svemir
Rudic
,
Anibal J.
Ramirez-Cuesta
,
Melissa A.
Denecke
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[14341, 14938]
Open Access
Abstract: During the nuclear waste disposal process, radioactive iodine in fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimised system volume). Here, we report high I2 adsorption in a series of robust porous metal-organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I2 uptake of 1.54 g g-1 and its structure remains completely unperturbed upon inclusion/removal of I2. Direct observation and quantification of the adsorption, binding domains and dynamics of guest I2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modelling. These complimentary techniques reveal a comprehensive understanding on the host-I2 and I2-I2 binding interaction at a molecular level. The initial binding site of I2 in MFM-300(Sc), I2I, is located near the bridging hydroxyl group of the [ScO4(OH)2] moiety [I2I···H–O = 2.263(9) Å] with an occupancy of 0.268. I2II is located interstitially between two phenyl rings of neighbouring ligand molecules [I2II···phenyl ring = 3.378(9) and 4.228(5) Å]. I2II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I2 loading an unprecedented self-aggregation of I2 molecules into triple-helical chains within the confined nano-voids has been observed at crystallographic resolution, leading to a highly efficient packing of I2 molecules with an exceptional I2 storage density of 3.08 g cm-3 in MFM-300(Sc).
|
Oct 2017
|
|