I05-ARPES
|
Jonas A.
Krieger
,
Samuel
Stolz
,
Iñigo
Robredo
,
Kaustuv
Manna
,
Emily C.
Mcfarlane
,
Mihir
Date
,
Banabir
Pal
,
Jiabao
Yang
,
Eduardo
B. Guedes
,
J. Hugo
Dil
,
Craig M.
Polley
,
Mats
Leandersson
,
Chandra
Shekhar
,
Horst
Borrmann
,
Qun
Yang
,
Mao
Lin
,
Vladimir N.
Strocov
,
Marco
Caputo
,
Matthew D.
Watson
,
Timur K.
Kim
,
Cephise
Cacho
,
Federico
Mazzola
,
Jun
Fujii
,
Ivana
Vobornik
,
Stuart S. P.
Parkin
,
Barry
Bradlyn
,
Claudia
Felser
,
Maia G.
Vergniory
,
Niels B. M.
Schröter
Diamond Proposal Number(s):
[20617, 26098, 24703]
Open Access
Abstract: Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking – a directional relationship between an electron’s spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.
|
May 2024
|
|
I10-Beamline for Advanced Dichroism - scattering
|
N.-J.
Steinke
,
S. L.
Zhang
,
P. J.
Baker
,
L. B.
Duffy
,
F.
Kronast
,
J.
Krieger
,
Z.
Salman
,
T.
Prokscha
,
A.
Suter
,
S.
Langridge
,
Gerrit
Van Der Laan
,
T.
Hesjedal
Diamond Proposal Number(s):
[11503]
Abstract: Chromium-doped
Sb
2
Te
3
is a magnetic topological insulator (MTI), which belongs to the
(
Sb
,
Bi
)
2
(
Se
,
Te
)
3
family. When doped with the transition metals V, Cr, and Mn this family displays long-range ferromagnetic order above liquid nitrogen temperature and is currently intensely explored for quantum device applications. Despite the large magnetic ordering temperature, the experimental observation of dissipationless electrical transport channels, i.e., the quantum anomalous Hall effect, is limited in these materials to temperatures below
≈
2
K. Inhomogeneities in the MTI have been identified as a major concern, affecting the coupling between the Dirac states and the magnetic dopants. Nevertheless, details on the local magnetic order in these materials are not well understood. Here, we report the study of the magnetic correlations in thin films using a combination of muon spin relaxation
(
μ
SR
)
, and magnetic soft x-ray spectroscopy and imaging.
μ
SR
provides two key quantities for understanding the microscopic magnetic behavior: The magnetic volume fraction, i.e., the percentage of the material that is ferromagnetically ordered, and the relaxation rate, which is sensitive to the magnetic static
(
≈
μ
s
)
and dynamic disorder. By choosing different implantation depths for the muons, one can further discriminate between near-surface and bulk properties. No evidence for a surface enhancement of the magnetic ordering is observed, but, instead, we find evidence of small magnetically ordered clusters in a paramagnetic background, which are coupled. The significant magnetic field shift that is present in all samples indicates a percolation transition that proceeds through the formation and growth of magnetically ordered spin clusters. We further find that fluctuations are present even at low temperatures, and that there appears to be a transition between superparamagnetism and superferromagnetism.
|
Dec 2022
|
|
I05-ARPES
|
Niels B. M.
Schroeter
,
Iñigo
Robredo
,
Sebastian
Klemenz
,
Robert J.
Kirby
,
Jonas A.
Krieger
,
Ding
Pei
,
Tianlun
Yu
,
Samuel
Stolz
,
Thorsten
Schmitt
,
Pavel
Dudin
,
Timur K.
Kim
,
Cephise
Cacho
,
Andreas
Schnyder
,
Aitor
Bergara
,
Vladimir N.
Strocov
,
Fernando
De Juan
,
Maia G.
Vergniory
,
Leslie M.
Schoop
Diamond Proposal Number(s):
[26098, 20617]
Open Access
Abstract: Magnetic Weyl semimetals are a newly discovered class of topological materials that may serve as a platform for exotic phenomena, such as axion insulators or the quantum anomalous Hall effect. Here, we use angle-resolved photoelectron spectroscopy and ab initio calculations to discover Weyl cones in CoS2, a ferromagnet with pyrite structure that has been long studied as a candidate for half-metallicity, which makes it an attractive material for spintronic devices. We directly observe the topological Fermi arc surface states that link the Weyl nodes, which will influence the performance of CoS2 as a spin injector by modifying its spin polarization at interfaces. In addition, we directly observe a minority-spin bulk electron pocket in the corner of the Brillouin zone, which proves that CoS2 cannot be a true half-metal.
|
Dec 2020
|
|
I05-ARPES
|
Paolo
Sessi
,
Feng-Ren
Fan
,
Felix
Küster
,
Kaustuv
Manna
,
Niels B. M.
Schroeter
,
Jing-Rong
Ji
,
Samuel
Stolz
,
Jonas A.
Krieger
,
Ding
Pei
,
Timur K.
Kim
,
Pavel
Dudin
,
Cephise
Cacho
,
Remo N.
Widmer
,
Horst
Borrmann
,
Wujun
Shi
,
Kai
Chang
,
Yan
Sun
,
Claudia
Felser
,
Stuart S. P.
Parkin
Diamond Proposal Number(s):
[2470, 20617]
Open Access
Abstract: It has recently been proposed that combining chirality with topological band theory results in a totally new class of fermions. Understanding how these unconventional quasiparticles propagate and interact remains largely unexplored so far. Here, we use scanning tunneling microscopy to visualize the electronic properties of the prototypical chiral topological semimetal PdGa. We reveal chiral quantum interference patterns of opposite spiraling directions for the two PdGa enantiomers, a direct manifestation of the change of sign of their Chern number. Additionally, we demonstrate that PdGa remains topologically non-trivial over a large energy range, experimentally detecting Fermi arcs in an energy window of more than 1.6 eV that is symmetrically centered around the Fermi level. These results are a consequence of the deep connection between chirality in real and reciprocal space in this class of materials, and, thereby, establish PdGa as an ideal topological chiral semimetal.
|
Jul 2020
|
|
I05-ARPES
|
Niels B. M.
Schroeter
,
Samuel
Stolz
,
Kaustuv
Manna
,
Fernando
De Juan
,
Maia G.
Vergniory
,
Jonas A.
Krieger
,
Ding
Pei
,
Thorsten
Schmitt
,
Pavel
Dudin
,
Timur K.
Kim
,
Cephise
Cacho
,
Barry
Bradlyn
,
Horst
Borrmann
,
Marcus
Schmidt
,
Roland
Widmer
,
Vladimir N.
Strocov
,
Claudia
Felser
Diamond Proposal Number(s):
[24703, 20617]
Open Access
Abstract: Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number (C). Nodal band crossings with linear dispersion are expected to have at most |C|=4
|
C
|
=
4
, which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.
|
Jul 2020
|
|
I05-ARPES
|
Niels B. M.
Schröter
,
Ding
Pei
,
Maia G.
Vergniory
,
Yan
Sun
,
Kaustuv
Manna
,
Fernando
De Juan
,
Jonas A.
Krieger
,
Vicky
Süss
,
Marcus
Schmidt
,
Pavel
Dudin
,
Barry
Bradlyn
,
Timur K.
Kim
,
Thorsten
Schmitt
,
Cephise
Cacho
,
Claudia
Felser
,
Vladimir N.
Strocov
,
Yulin
Chen
Diamond Proposal Number(s):
[19883, 21400]
Abstract: Topological semimetals in crystals with a chiral structure (which possess a handedness due to a lack of mirror and inversion symmetries) are expected to display numerous exotic physical phenomena, including fermionic excitations with large topological charge1, long Fermi arc surface states2,3, unusual magnetotransport4 and lattice dynamics5, as well as a quantized response to circularly polarized light6. So far, all experimentally confirmed topological semimetals exist in crystals that contain mirror operations, meaning that these properties do not appear. Here, we show that AlPt is a structurally chiral topological semimetal that hosts new four-fold and six-fold fermions, which can be viewed as a higher spin generalization of Weyl fermions without equivalence in elementary particle physics. These multifold fermions are located at high symmetry points and have Chern numbers larger than those in Weyl semimetals, thus resulting in multiple Fermi arcs that span the full diagonal of the surface Brillouin zone. By imaging these long Fermi arcs, we experimentally determine the magnitude and sign of their Chern number, allowing us to relate their dispersion to the handedness of their host crystal.
|
May 2019
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[6641]
Abstract: Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission in the brain. Their dysfunction is implicated in many neurological disorders, rendering iGluRs potential drug targets. Here, we performed a systematic analysis of the druggability of two major iGluR subfamilies, using molecular dynamics simulations in the presence of drug-like molecules. We demonstrate the applicability of druggability simulations by faithfully identifying known agonist and modulator sites on AMPA receptors (AMPARs) and NMDA receptors. Simulations produced the expected allosteric changes of the AMPAR ligand-binding domain in response to agonist. We also identified a novel ligand-binding site specific to the GluA3 AMPAR N-terminal domain (NTD), resulting from its unique conformational flexibility that we explored further with crystal structures trapped in vastly different states. In addition to providing an in-depth analysis into iGluR NTD dynamics, our approach identifies druggable sites and permits the determination of pharmacophoric features toward novel iGluR modulators.
|
Dec 2018
|
|
|
L. B.
Duffy
,
N.-J.
Steinke
,
J. A.
Krieger
,
A. I.
Figueroa
,
K.
Kummer
,
T.
Lancaster
,
S. R.
Giblin
,
F. L.
Pratt
,
S. J.
Blundell
,
T.
Prokscha
,
A.
Suter
,
Sean
Langridge
,
V. N.
Strocov
,
Z.
Salman
,
G.
Van Der Laan
,
T.
Hesjedal
Abstract: Magnetic doping with transition metal ions is the most widely used approach to break time-reversal symmetry in a topological insulator (TI)—a prerequisite for unlocking the TI’s exotic potential. Recently, we reported the doping of Bi2Te3 thin films with rare-earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy-doped Bi2Te3 remained elusive.Here, we present an x-ray magnetic circular dichroism, polarized neutron reflectometry, muon-spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous, magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition-metal-doped layers. However, the introduction of some charge carriers by the Dy dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition-metal-doped topological insulators, and Dy doping should thus allow for improved TI quantum devices.
|
May 2018
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Abstract: AMPA-type glutamate receptors (AMPARs), central mediators of rapid neurotransmission and synaptic plasticity, predominantly exist as heteromers of the GluA1-4 subunits. Here we report first AMPAR heteromer structures, which deviate substantially from existing GluA2 homomers. Crystal structures of the GluA2/3 and GluA2/4 N-terminal domains reveal a novel compact conformation with an alternating arrangement of the four subunits around a central axis. This organization is confirmed by cysteine crosslinking in full-length receptors and permitted us to determine the structure of an intact GluA2/3 receptor by cryo-EM. Two models in the ligand-free state, at 8.25 Å and 10.3 Å resolution, exhibit a substantial vertical compression and close associations between domain layers, reminiscent of NMDA receptors. Model 1 resembles a resting state, model 2 a desensitized state, providing snapshots of gating transitions in the nominal absence of ligand. Our data reveal organizational features of heteromeric AMPARs and provide a framework to decipher AMPAR architecture and signaling.
|
Mar 2016
|
|