B18-Core EXAFS
E01-JEM ARM 200CF
|
George F.
Tierney
,
Shahram
Alijani
,
Monik
Panchal
,
Donato
Decarolis
,
Martha
Briceno De Gutierrez
,
Khaled
Mohammed
,
June
Callison
,
Emma
Gibson
,
Paul
Thompson
,
Paul
Collier
,
Nikolaos
Dimitratos
,
E. Crina
Corbos
,
Frederic
Pelletier
,
Alberto
Villa
,
Peter
Wells
Abstract: We demonstrate a modified sol-immobilization procedure using (MeOH) x /(H 2 O) 1-x solvent mixtures to prepare Pd/TiO 2 catalysts that are able to reduce the formation of acid catalyzed products, e.g. ethers, for the hydrogenation of furfural. Transmission electron microscopy found a significant increase in polyvinyl alcohol (PVA) deposition at the metal-support interface and temperature programmed reduction found a reduced uptake of hydrogen, compared to an established Pd/TiO 2 preparation. We propose that the additional PVA hinders hydrogen spillover onto the TiO 2 support and limits the formation of Brønsted acid sites, required to produce ethers. Elsewhere, the new preparation route was able to successfully anchor colloidal Pd to the TiO 2 surface, without the need for acidification. This work demonstrates the potential for minimizing process steps as well as optimizing catalyst selectivity – both important objectives for sustainable chemistry.
|
Oct 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[19850]
Abstract: We have studied the effect of different supports (CeO2, ZrO2, SiC, SiO2 and Al2O3) on the catalytic performance and phase stability of Co3O4 nanoparticles during the preferential oxidation of CO (CO-PrOx) under different H2-rich gas environments and temperatures. Our results show that Co3O4/ZrO2 has superior CO oxidation activity, but transforms to Co0 and consequently forms CH4 at relatively low temperatures. The least reduced and least methanation active catalyst (Co3O4/Al2O3) also exhibits the lowest CO oxidation activity. Co-feeding H2O and CO2 suppresses CO oxidation over Co3O4/ZrO2 and Co3O4/SiC, but also suppresses Co0 and CH4 formation. In conclusion, weak nanoparticle-support interactions (as in Co3O4/ZrO2) favour high CO oxidation activity possibly via the Mars-van Krevelen mechanism. However, stronger interactions (as in Co3O4/Al2O3) help minimise Co0 and CH4 formation. Therefore, this work reveals the bi-functional role required of supports used in CO-PrOx, i.e., to enhance catalytic performance and improve the phase stability of Co3O4.
|
Jun 2021
|
|
B18-Core EXAFS
|
Monik
Panchal
,
June
Callison
,
Vainius
Skukauskas
,
Diego
Gianolio
,
Giannantonio
Cibin
,
Andrew P. E.
York
,
Manfred Erwin
Schuster
,
Timothy I.
Hyde
,
Paul
Collier
,
C. Richard A.
Catlow
,
Emma K.
Gibson
Diamond Proposal Number(s):
[24156]
Open Access
Abstract: Platinum group metals (PGM) such as palladium and rhodium based catalysts are currently being implemented in Gasoline Particulate Filter (GPF) autoexhaust aftertreatment systems. However, little is known about how the trapped particulate matter, such as the incombustible ash, interacts with the catalyst and so may affect its performance. This operando study follows the evolution of the Pd found in two different model GPF systems: one containing ash components extracted from a GPF and another from a catalyst washcoat prior to adhesion onto the GPF. We show that the catalytic activity of the two systems vary when compared with a 0 g ash containing GPF. Compared to the 0 g ash sample the 20 g ash containing sample had a higher CO light off temperature, in addition, an oscillation profile for CO, CO2 and O2 was observed, which is speculated to be a combination of CO oxidation, C deposition via a Boudouard Reaction and further partial oxidation of the deposited species to CO. During the ageing procedure the washcoat sample reduces NO at a lower temperature than the 0 g ash sample. However, post ageing the 0 g ash sample recovers and both samples reduce NO at 310 circleC. In comparison, the 20 g ash GPF sample maintains a higher NO reduction temperature of 410 circleC post ageing, implying that the combination of high temperature ageing and presence of ash has an irreversible negative effect on catalyst performance.
|
May 2021
|
|
B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[19850]
Abstract: Rational design of low-cost and active electrocatalysts is crucial for upgrading of biomass-derived chemicals into value-added products. Here, we report highly efficient catalysts of ternary NiCoMn-layered double hydroxides (NiCoMn-LDHs) nanosheets which are oxygen vacancy-rich, produced under controllable conditions for the electrocatalytic oxidation of both biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) and furfural to furoic acid (FurAc) in mild conditions, respectively. Electrochemical tests showed that the oxidation of HMF and furfural were preferential over the oxidation of water at the lower applied potentials with NiCoMn-LDHs catalysts. The high yields of FDCA (91.7%) and FurAc (92.4%) were achieved in 2.5 h using 1.15 nm thick NiCoMn-LDHs nanosheets with a NiCo:Mn ratio of 2:1 at 35 oC and atmospheric pressure. The mechanism for the superior performance, high durability, and good Faradaic efficiency of the catalysts has been elucidated by a comprehensive characterization, which confirmed the ultrathin nanosheets expose more Co-NiOOH active sites with oxygen vacancies, facilitating the synergistic effect between HMF as well as furfural oxidation reaction on Co-Ni and Mn2+ states. The oxygen vacancy-rich NiCoMn-LDHs nanosheets catalysts present a novel and energy-efficient solution to achieve a high yield of value-added chemicals from renewable sources.
|
Apr 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[15151]
Abstract: Hydrothermal degreening and ageing procedures were applied to a tri-metal (Pt-Pd-Rh) fully formulated lean NOX Trap catalyst to evaluate the effects of thermal stress on the performances and structural properties. X-ray absorption fine structure (XAFS) analysis revealed that the average size of the platinum particles was the same after degreening and ageing treatments. The formation of a new phase of alloyed Pt-Pd was observed to increase with the thermal load. The size of the ceria particles also increased after the ageing treatment. NOX storage capacity experiments revealed a substantial decrease of the concentration of active NOX storage sites which correlated with both ageing and degreening protocols. The performances of the treated catalyst were evaluated through spatially resolved (SpaciMS) lean-rich cycles. During the lean phase, the impact of the decrease in storage sites was significant on the aged sample, where an enlargement of the area required to achieve full storage was observed. On the other hand, the regeneration functionalities did not appear to be particularly affected by ageing. Rather, the aged sample showed a decrease of oxygen storage capacity (OSC), which promoted a lower reductant consumption and therefore a quicker and more efficient reduction process. On the other hand, the different distributions of adsorbed species by the end of the lean phase produced greater spread presence of NH3 and NOX slip along the channels of the aged sample during the reduction.
|
Apr 2021
|
|
B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Shaojun
Xu
,
Xue
Han
,
Yujie
Ma
,
Thien D.
Duong
,
Longfei
Lin
,
Emma K.
Gibson
,
Alena
Sheveleva
,
Sarayute
Chansai
,
Alex
Walton
,
Duc-The
Ngo
,
Mark D.
Frogley
,
Chiu C.
Tang
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
C. Richard A.
Catlow
,
Christopher
Hardacre
,
Sihai
Yang
,
Martin
Schroeder
Open Access
Abstract: Efficient catalytic conversion of NO2 to non-harmful species remains an important target for research. State-of-the-art deNOx processes are based upon ammonia (NH3)-assisted selective catalytic reduction (NH3-SCR) over Cu-exchanged zeolites at elevated temperatures. Here, we describe a highly efficient non-thermal plasma (NTP) deNOx process catalyzed by a Cu-embedded metal-organic framework, Cu/MFM-300(Al), at room temperature. Under NTP activation at 25°C, Cu/MFM-300(Al) enables direct decomposition of NO2 into N2, NO, N2O, and O2 without the use of NH3 or other reducing agents. NO2 conversion of 96% with a N2 selectivity of 82% at a turnover frequency of 2.9 h−1 is achieved, comparable to leading NH3-SCR catalysts that use NH3 operating at 250°C–550°C. The mechanism for the rate-determining step (NO→N2) is elucidated by in operando diffuse reflectance infrared Fourier transform spectroscopy, and electron paramagnetic resonance spectroscopy confirms the formation of Cu2+⋯NO nitrosylic adducts on Cu/MFM-300(Al), which facilitates NO dissociation and results in the notable N2 selectivity.
|
Feb 2021
|
|
|
Open Access
Abstract: The utilization of operando spectroscopy has allowed us to watch the dynamic nature of supported metal nanoparticles. However, the realization that subtle changes to environmental conditions affect the form of the catalyst necessitates that we assess the structure of the catalyst across the reactant/product gradient that exists across a fixed bed reactor. In this study, we have performed spatial profiling of a Pd/Al2O3 catalyst during NH3 oxidation, simultaneously collecting mass spectrometry and X-ray absorption spectroscopy data at discrete axial positions along the length of the catalyst bed. The spatial analysis has provided unique insights into the structure–activity relationships that govern selective NH3 oxidation—(i) our data is consistent with the presence of PdNx after the spectroscopic signatures for bulk PdNx disappear and that there is a direct correlation to the presence of this structure and the selectivity toward N2; (ii) at high temperatures, ≥400 °C, we propose that there are two simultaneous reaction pathways—the oxidation of NH3 to NOx by PdO and the subsequent catalytic reduction of NOx by NH3 to produce N2. The results in this study confirm the structural and catalytic diversity that exists during catalysis and the need for such an understanding if improvements to important emission control technologies, such as the selective catalytic oxidation of NH3, are to be made.
|
Feb 2021
|
|
B18-Core EXAFS
|
Santhosh K.
Matam
,
Caitlin
Moffat
,
Pip
Hellier
,
Michael
Bowker
,
Ian P.
Silverwood
,
C. Richard A.
Catlow
,
S. David
Jackson
,
James
Craswell
,
Peter P.
Wells
,
Stewart F.
Parker
,
Emma K.
Gibson
Diamond Proposal Number(s):
[10306]
Open Access
Abstract: A MoOx/Al2O3 catalyst was synthesised and tested for oxidative (ODP) and non-oxidative (DP) dehydrogenation of propane in a reaction cycle of ODP followed by DP and a second ODP run. Characterisation results show that the fresh catalyst contains highly dispersed Mo oxide species in the +6 oxidation state with tetrahedral coordination as [MoVIO4]2− moieties. In situ X-ray Absorption Spectroscopy (XAS) shows that [MoVIO4]2− is present during the first ODP run of the reaction cycle and is reduced to MoIVO2 in the following DP run. The reduced species are partly re-oxidised in the subsequent second ODP run of the reaction cycle. The partly re-oxidised species exhibit oxidation and coordination states that are lower than 6 but higher than 4 and are referred to as MoxOy. These species significantly improved propene formation (relatively 27% higher) in the second ODP run at similar propane conversion activity. Accordingly, the initial tetrahedral [MoVIO4]2− present during the first ODP run of the reaction cycle is active for propane conversion; however, it is unselective for propene. The reduced MoIVO2 species are relatively less active and selective for DP. It is suggested that the MoxOy species generated by the reaction cycle are active and selective for ODP. The vibrational spectroscopic data indicate that the retained surface species are amorphous carbon deposits with a higher proportion of aromatic/olefinic like species.
|
Nov 2020
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[15151, 18431]
Open Access
Abstract: The technique of inelastic neutron scattering (INS) is used to investigate how hydrogen is partitioned within a series of Na and S promoted iron-based Fischer-Tropsch-to-olefin catalysts. Two reaction test regimes are examined. First, reaction testing at elevated temperature and pressure demonstrate how Na/S additions enhance short chain olefin selectivity and reduce methane formation under industrially relevant reaction conditions. For a fixed level of Na incorporation (2000 ppm), sulfur concentrations of ≤ 100 ppm result in only a modest improvement in olefin selectivity. However, for sulfur values of ≥ 100 ppm there is a noticeable and systematic increase in C2-C4 olefin selectivity; rising from ∼30.0 % to 35.2% at 250 ppm. Second, using ambient pressure CO hydrogenation as a test reaction in INS and micro-reactor configurations, catalyst samples are further analysed by TPR, TPO, XRD and S K-edge XANES. INS shows the formation of a hydrocarbonaceous overlayer to be significantly attenuated by the presence of the promoters, with increasing S levels significantly reducing the intensity of the sp2 and sp3 hybridised ν(C-H) modes of the overlayer, albeit to differing degrees. A probable role for how this combination of promoters is perturbing the form of the hydrocarbonaceous overlayer to subsequently moderate the product distribution is considered.
|
Oct 2020
|
|
B18-Core EXAFS
|
B.
Venezia
,
E.
Cao
,
Santhosh K.
Matam
,
C.
Waldron
,
G.
Cibin
,
E. K.
Gibson
,
S.
Golunski
,
P. P.
Wells
,
I.
Silverwood
,
C. R. A.
Catlow
,
G.
Sankar
,
A.
Gavriilidis
Diamond Proposal Number(s):
[19359]
Open Access
Abstract: Operando X-ray absorption spectroscopy (XAS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry (MS) provide complementary information on the catalyst structure, surface reaction mechanisms and activity relationships. The powerful combination of the techniques has been the driving force to design and engineer suitable spectroscopic operando reactors that can mitigate limitations inherent to conventional reaction cells and facilitate experiments under kinetic regimes. Microreactors have recently emerged as effective spectroscopic operando cells due to their plug-flow type operation with no dead volume and negligible mass and heat transfer resistances. Here we present a novel microfabricated reactor that can be used for both operando XAS and DRIFTS studies. The reactor has a glass–silicon–glass sandwich-like structure with a reaction channel (3000 μm × 600 μm; width × depth) packed with a catalyst bed (ca. 25 mg) and placed sideways to the X-ray beam, while the infrared beam illuminates the catalyst bed from the top. The outlet of the reactor is connected to MS for continuous monitoring of the reactor effluent. The feasibility of the microreactor is demonstrated by conducting two reactions: i) combustion of methane over 2 wt% Pd/Al2O3 studied by operando XAS at the Pd K-edge and ii) CO oxidation over 1 wt% Pt/Al2O3 catalyst studied by operando DRIFTS. The former shows that palladium is in an oxidised state at all studied temperatures, 250, 300, 350, 400 °C and the latter shows the presence of linearly adsorbed CO on the platinum surface. Furthermore, temperature-resolved reduction of palladium catalyst with methane and CO oxidation over platinum catalyst are also studied. Based on these results, the catalyst structure and surface reaction dynamics are discussed, which demonstrate not only the applicability and versatility of the microreactor for combined operando XAS and DRIFTS studies, but also illustrate the unique advantages of the microreactor for high space velocity and transient response experiments.
|
Oct 2020
|
|