E02-JEM ARM 300CF
I10-Beamline for Advanced Dichroism - scattering
|
Diamond Proposal Number(s):
[23285, 23338]
Open Access
Abstract: Magnetic exchange springs (ESs) are composed of exchange-coupled hard and soft magnetic layers, i.e., layers with high and low anisotropy, respectively. The moments in the soft layer can be wound up by applying an external field, which has to be smaller than the anisotropy field of the hard layer. Alternatively, an ES can be realized by biasing the soft magnetic layer by two adjacent hard magnetic layers with different magnetic anisotropy directions. We have fabricated an ES layer stack by magnetron sputter deposition. As the hard magnetic bottom layer, we used epitaxial
Fe
Pt
L1
0
, and as the top layer
Co
with both layers having different in-plane easy axes. These hard layers pin the moments of a soft permalloy (
Ni
81
Fe
19
) layer sandwiched between them, winding up an ES at remanence. The anisotropy of the polycrystalline top
Co
layer was engineered by glancing-angle deposition to have in-plane easy axis anisotropy perpendicular to the easy direction of the bottom layer. Using soft x-ray spectroscopy and magneto-optical measurements, we found the in-plane ES to extend from the soft layer into the top layer of our
Fe
Pt
/permalloy/
Co
trilayer structure.
|
Oct 2023
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[23285]
Abstract: The ability to control the in-plane magnetic anisotropy of a thin film is important for magnetic device applications. One way of accomplishing this task is by glancing angle deposition (GLAD). In this study, thin Co layers have been deposited using GLAD magnetron sputtering on MgO(001) and MgO(110) substrates. For Co films on MgO(001), the in-plane anisotropy direction can be directly controlled via the deposition angle. In contrast, for Co on MgO(110), the anisotropy due to the deposition angle is competing with the anisotropy induced by the substrate, while the growth parameters determine which contribution dominates. On the other hand, while on MgO(001) the deposition angle as well as the film thickness affect the strength of the Co in-plane anisotropy, no influence of these parameters on the magnetic properties is found for films on MgO(110).
|
Mar 2023
|
|
I10-Beamline for Advanced Dichroism - scattering
|
Maciej
Dabrowski
,
Jade N.
Scott
,
William R.
Hendren
,
Colin M.
Forbes
,
Andreas
Frisk
,
David
Burn
,
David G.
Newman
,
Connor R. J.
Sait
,
Paul S.
Keatley
,
Alpha T.
N'Diaye
,
Thorsten
Hesjedal
,
Gerrit
Van Der Laan
,
Robert
Bowman
,
Robert J.
Hicken
Diamond Proposal Number(s):
[17745, 19116, 20760]
Abstract: All-optical switching of magnetization has great potential for use in future ultrafast and energy efficient nanoscale magnetic storage devices. So far, research has been almost exclusively focused on rare-earth based materials, which limits device tunability and scalability. Here, we show that a perpendicularly magnetized synthetic ferrimagnet composed of two distinct transition metal ferromagnetic layers, Ni3Pt and Co, can exhibit helicity independent magnetization switching. Switching occurs between two equivalent remanent states with antiparallel alignment of the Ni3Pt and Co magnetic moments and is observable over a broad temperature range. Time-resolved measurements indicate that the switching is driven by a spin-polarized current passing through the subnanometer Ir interlayer. The magnetic properties of this model system may be tuned continuously via subnanoscale changes in the constituent layer thicknesses as well as growth conditions, allowing the underlying mechanisms to be elucidated and paving the way to a new class of data storage devices.
|
Oct 2021
|
|
|
Open Access
Abstract: Ferromagnetic resonance (FMR) and x-ray detected FMR (XFMR) results for Permalloy (Py) and [Co/Pt]10/Py films, with and without thin Pt spacers between the [Co/Pt]10 and Py layers, are presented and discussed. The first layer [Co/Pt]10 was chosen due its characteristic perpendicular anisotropy, with the potential to pin neighboring Py spins. However, in practice, the FMR results were found to be dominated by the 50-nm-thick Py films, especially when the thickness of the Pt spacer exceeds 1.5 nm. Nonetheless, out-of-plane FMR measurements reveal interesting behavior. In particular, the uniform k=0 mode is extremely sensitive to the alignment of the magnetic field normal to the film. Misalignment by just 3° shifts the cusp, at Bappz ~ μ0M in the plot of resonance frequency against applied field, upwards to ~ 6 GHz. In addition, out-of-plane VNA-FMR maps reveal the presence of additional modes. For example, a perpendicular standing spin-wave (PSSW)-state, above the cusp at Bappz ≥ μ0M, is clearly identified. However, as the magnetic field is reduced below the cusp, the PSSW state morphs, continuously, through a series of canted spin-wave states (CSSW) into a horizontal standing spin-wave (HSSW) state, increasing in frequency to ~ 9.5 GHz. Finally, the PSSW, CSSW and HSSW states, are accurately interpreted, using a multi-layer model of the Py film.
|
Jan 2021
|
|
I10-Beamline for Advanced Dichroism - scattering
|
Maciej
Dabrowski
,
Andreas
Frisk
,
David M.
Burn
,
David G.
Newman
,
Christoph
Klewe
,
Alpha T.
N’diaye
,
Padraic
Shafer
,
Elke
Arenholz
,
Graham J.
Bowden
,
Thorsten
Hesjedal
,
Gerrit
Van Der Laan
,
Gino
Hrkac
,
Robert J.
Hicken
Diamond Proposal Number(s):
[17745, 19116, 20760]
Abstract: Microwave and heat-assisted magnetic recordings are two competing technologies that have greatly increased the capacity of hard disk drives. The efficiency of the magnetic recording process can be further improved by employing non-collinear spin structures that combine perpendicular and in-plane magnetic anisotropy. Here, we investigate both microwave and optically excited magnetization dynamics in [Co/Pt]/NiFe exchange spring samples. The resulting canted magnetization within the nanoscale [Co/Pt]/NiFe interfacial region allows for optically stimulated magnetization precession to be observed for an extended magnetic field and frequency range. The results can be explained by formation of an imprinted domain structure, which locks the magnetization orientation and makes the structures more robust against external perturbations. Tuning the canted interfacial domain structure may provide greater control of optically excited magnetization reversal and optically generated spin currents, which are of paramount importance for future ultrafast magnetic recording and spintronic applications.
|
Nov 2020
|
|
I10-Beamline for Advanced Dichroism - scattering
|
Maciej
Dabrowski
,
Takafumi
Nakano
,
David
Burn
,
Andreas
Frisk
,
David G.
Newman
,
Christoph
Klewe
,
Qian
Li
,
Mengmeng
Yang
,
Padraic
Shafer
,
Elke
Arenholz
,
Thorsten
Hesjedal
,
Gerrit
Van Der Laan
,
Zi Q.
Qiu
,
Robert J.
Hicken
Diamond Proposal Number(s):
[17745, 19116, 20760]
Abstract: Insulating antiferromagnets have recently emerged as efficient and robust conductors of spin current. Element-specific and phase-resolved x-ray ferromagnetic resonance has been used to probe the injection and transmission of ac spin current through thin epitaxial NiO(001) layers. The spin current is found to be mediated by coherent evanescent spin waves of GHz frequency, rather than propagating magnons of THz frequency, paving the way towards coherent control of the phase and amplitude of spin currents within an antiferromagnetic insulator at room temperature.
|
May 2020
|
|
I10-Beamline for Advanced Dichroism - scattering
|
Christoph
Klewe
,
Qian
Li
,
Mengmeng
Yang
,
Alpha T.
N’diaye
,
David M.
Burn
,
Thorsten
Hesjedal
,
Adriana
Figueroa
,
Chanyong
Hwang
,
Jia
Li
,
Robert J.
Hicken
,
Padraic
Shafer
,
Elke
Arenholz
,
Gerrit
Van Der Laan
,
Ziqiang
Qiu
Diamond Proposal Number(s):
[18542, 19116, 20483, 20493, 21616]
|
Apr 2020
|
|
Theoretical Physics
|
Open Access
Abstract: In 1878, the Dutch physicist Hendrik Antoon Lorentz first addressed the calculation of the local electric field at an atomic site in a ferroelectric material, generated by all the other electric dipoles within the sample. This calculation, which applies equally well to ferromagnets, is taught in Universities around the World. Here we demonstrate that the Lorentz concept can be used to speed up calculations of the local dipolar field in square, circular, and elliptical shaped monolayers and thin films, not only at the center of the film, but across the sample. Calculations show that long elliptical and rectangular films should exhibit the narrowest ferromagnetic resonance linewidth. In addition, discrete dipole calculations show that the Lorentz cavity field does not hold in tetragonal films. Depending on the ratio (b/a), the local field can be either less/greater than : an observation that has implications for ferromagnetic resonance. 3D simple cubic (SC) systems are also examined. For example, while most texts discuss the Lorentz cavity field in terms of a Lorentz sphere, the Lorentz cavity field still holds when a Lorentz sphere is replaced by a the Lorentz cube, but only in cubic SC, FCC and BCC systems. Finally, while the primary emphasis is on the discrete dipole-dipole interaction, contact is made with the continuum model. For example, in the continuous SC dipole model, just one monolayer is required to generate the Lorentz cavity field. This is in marked contrast to the discrete dipole model, where a minimum of five adjacent monolayers is required.
|
Jul 2019
|
|
I06-Nanoscience (XPEEM)
I10-Beamline for Advanced Dichroism - scattering
|
E.
Burgos-Parra
,
N.
Bukin
,
S.
Sani
,
A. I.
Figueroa
,
G.
Beutier
,
M.
Dupraz
,
S.
Chung
,
P.
Dürrenfeld
,
Q. Tuan
Le
,
S. M.
Mohseni
,
A.
Houshang
,
S. A.
Cavill
,
R. J.
Hicken
,
J.
Akerman
,
G.
Van Der Laan
,
F. Y.
Ogrin
Diamond Proposal Number(s):
[15277]
Open Access
Abstract: A dissipative magnetic soliton, or magnetic droplet, is a structure that has been predicted to exist within a thin magnetic layer when non-linearity is balanced by dispersion, and a driving force counteracts the inherent damping of the spin precession. Such a soliton can be formed beneath a nano-contact (NC) that delivers a large spin-polarized current density into a magnetic layer with perpendicular magnetic anisotropy. Although the existence of droplets has been confirmed from electrical measurements and by micro-magnetic simulations, only a few attempts have been made to
directly observe the magnetic landscape that sustains these structures, and then only for a restricted set of experimental parameter values. In this work we use and x-ray holography technique HERALDO, to image the magnetic structure of the [Co/Ni]x4 multilayer within a NC orthogonal pseudo spin-valve, for different range of magnetic fields and injected electric currents. The magnetic configuration imaged at −33 mA and 0.3 T for devices with 90 nm NC diameter reveals a structure that is within the range of current where the droplet soliton exist based on our electrical measurements and have it is consistent with the expected size of the droplet (∼100 nm diameter) and its spatial position within the sample. We also report the magnetisation configurations observed at lower DC currents in the presence of fields (0–50 mT), where it is expected to observe regimes of the unstable droplet formation.
|
Aug 2018
|
|
I06-Nanoscience (XPEEM)
I10-Beamline for Advanced Dichroism - scattering
|
C. J.
Durrant
,
L. R.
Shelford
,
R. A. J.
Valkass
,
R. J.
Hicken
,
A. I.
Figueroa
,
A. A.
Baker
,
G.
Van Der Laan
,
L. B.
Duffy
,
P.
Shafer
,
C.
Klewe
,
E.
Arenholz
,
S. A.
Cavill
,
J. R.
Childress
,
J. A.
Katine
Diamond Proposal Number(s):
[8782, 11585]
Abstract: Spin pumping has been studied within Ta / Ag / Ni81Fe19 (0–5 nm) / Ag (6 nm) / Co2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni81Fe19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNAFMR)
experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and super-paramagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR line width that we attribute to improved interface quality. This study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.
|
Oct 2017
|
|