I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[23941, 24282]
Open Access
Abstract: Imaging complex vascular structures by X-ray microcomputed tomography (μ-CT) is becoming vital for research purposes in pathology of vascular diseases. Acrylic-based polymerizable resins are widely adopted for the contrast agent to prepare pathological specimens for imaging of vascular structures. For imaging of vascular structures at higher resolution, it is promising to develop inorganic-type contrast agents with higher X-ray attenuation coefficient as well as low viscosity, homogeneity, minimum shrinkage, curable (gellable) for replication, and low cost. Herein, a novel inorganic sol–gel system based on concentrated colloidal dispersion of NiAl layered double hydroxide (LDH) nanoparticles is described, allowing imaging of vascular structures at high resolution. NiAl LDH acts as nanofiller and alkaline catalyst to form a silica/LDH monolithic material with homogeneity from the nanoscale. Moreover, NiAl LDH nanoparticles contribute to the strong enhancement of the X-ray attenuation. As a proof-of-concept, X-ray μ-CT imaging of the developed contrast agent in glass capillaries and of blood vessels of a human placenta and murine liver is demonstrated.
|
Dec 2021
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[13241]
Abstract: Additive manufacturing (AM) platforms allow the production of patient tissue engineering scaffolds with desirable architectures. Although AM platforms offer exceptional control on architecture, post-processing methods such as sintering and freeze-drying often deform the printed scaffold structure. In-situ 4D imaging can be used to analyze changes that occur during post-processing. Visualization and analysis of changes in selected volumes of interests (VOIs) over time are essential to understand the underlining mechanisms of scaffold deformations. Yet, automated detection and tracking of VOIs in the 3D printed scaffold over time using 4D image data is currently an unsolved image processing task. This paper proposes a new image processing technique to segment, detect and track volumes of interest in 3D printed tissue engineering scaffolds. The method is validated using a 4D synchrotron sourced microCT image data captured during the sintering of bioactive glass scaffolds in-situ. The proposed method will contribute to the development of scaffolds with controllable designs and optimum properties for the development of patient-specific scaffolds.
|
Nov 2021
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[13241]
Abstract: We propose a novel image analysis framework to automate analysis of X-ray micro-tomography images of sintering ceramics and glasses, using open-source toolkits and machine learning. Additive manufacturing (AM) of glasses and ceramics usually requires sintering of green bodies. Sintering causes shrinkage, which presents a challenge for controlling the metrology of the final architecture. Therefore, being able to monitor sintering in 3D over time (termed 4D) is important when developing new porous ceramics or glasses. Synchrotron X-ray tomographic imaging allows in situ, real-time capture of the sintering process at both micro and macro scales using a furnace rig, facilitating 4D quantitative analysis of the process. The proposed image analysis framework is capable of tracking and quantifying the densification of glass or ceramic particles within multiple volumes of interest (VOIs) along with structural changes over time using 4D image data. The framework is demonstrated by 4D quantitative analysis of bioactive glass ICIE16 within a 3D printed scaffold. Here, densification of glass particles within 3 VOIs were tracked and quantified along with diameter change of struts and inter-strut pore size over the 3D image series, delivering new insights on the sintering mechanism of ICIE16 bioactive glass particles in both micro and macro scales.
|
Oct 2021
|
|
I13-2-Diamond Manchester Imaging
|
W. M.
Tun
,
G.
Poologasundarampillai
,
H.
Bischof
,
G.
Nye
,
O. N. F.
King
,
M.
Basham
,
Y.
Tokudome
,
R. M.
Lewis
,
E. D.
Johnstone
,
P.
Brownbill
,
M.
Darrow
,
I. L.
Chernyavsky
Diamond Proposal Number(s):
[23941, 22562]
Open Access
Abstract: Multi-scale structural assessment of biological soft tissue is challenging but essential to gain insight into structure–function relationships of tissue/organ. Using the human placenta as an example, this study brings together sophisticated sample preparation protocols, advanced imaging and robust, validated machine-learning segmentation techniques to provide the first massively multi-scale and multi-domain information that enables detailed morphological and functional analyses of both maternal and fetal placental domains. Finally, we quantify the scale-dependent error in morphological metrics of heterogeneous placental tissue, estimating the minimal tissue scale needed in extracting meaningful biological data. The developed protocol is beneficial for high-throughput investigation of structure–function relationships in both normal and diseased placentas, allowing us to optimize therapeutic approaches for pathological pregnancies. In addition, the methodology presented is applicable in the characterization of tissue architecture and physiological behaviours of other complex organs with similarity to the placenta, where an exchange barrier possesses circulating vascular and avascular fluid spaces.
|
Jun 2021
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[11079]
Open Access
Abstract: Poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-4HB), and siloxane-doped vaterite (SiV) composite fibrous scaffolds with 3D cotton-wool-like structure were developed using an electrospinning system for use in bone tissue regeneration. Scaffolds exhibited a significantly larger fiber-fiber separation distribution than non-woven fiber mats as observed with micro-computed tomographic studies. Coating the hydrophobic P(3HB-4HB)/SiV fibers with imogolite nanotubes (INT), aluminum silicate nanotubes, made the 3D construct hydrophilic and improved water penetration into the 3D structure (~2 s). Coating efficacy was confirmed by the detection of aluminum on the surface of fibers using scanning electron microscopy (SEM) energy dispersive spectroscopy (EDS). Dissolution experiments showed increased release of silicate ions in cell culture medium which can improve migration and mineralization of osteogenic cells inside of the 3D structure. The coating also contributed to an enhanced adhesion and migration of osteoblast-like cells (SaOS-2) within the 3D construct. The differentiation and mineralization of the cells were not affected by the coating. The coating for such cotton-wool-like structured scaffolds was effective for an enhancement of cell functions on early stages of culture. Thus, the developed materials with 3D structure, flexibility, silicate-ion release ability, and cell compatibility are expected to be good candidate materials for bone tissue regeneration.
|
Feb 2020
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[13750]
Open Access
Abstract: Lymph nodes (LN) are crucial for immune function, and comprise an important interface between the blood and lymphatic systems. Blood vessels (BV) in LN are highly specialized, featuring high endothelial venules across which most of the resident lymphocytes crossed. Previous measurements of overall lymph and BV flow rates demonstrated that fluid also crosses BV walls, and that this is important for immune function. However, the spatial distribution of the BV in LN has not been quantified to the degree necessary to analyse the distribution of transmural fluid movement. In this study, we seek to quantify the spatial localization of LNBV, and to predict fluid movement across BV walls. MicroCT imaging of murine popliteal LN showed that capillaries were responsible for approximately 75% of the BV wall surface area, and that this was mostly distributed around the periphery of the node. We then modelled blood flow through the BV to obtain spatially resolved hydrostatic pressures, which were then combined with Starling’s law to predict transmural flow. Much of the total 10 nL/min transmural flow (under normal conditions) was concentrated in the periphery, corresponding closely with surface area distribution. These results provide important insights into the inner workings of LN, and provide a basis for further exploration of the role of LN flow patterns in normal and pathological functions.
|
Sep 2019
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[17001]
Open Access
Abstract: The sintering of bioactive glasses allows for the preparation of complex structures, such as three‐dimensional porous scaffolds. Such 3D constructs are particularly interesting for clinical applications of bioactive glasses in bone regeneration, as the scaffolds can act as a guide for in‐growing bone cells, allowing for good integration with existing and newly formed tissue while the scaffold slowly degrades. Owing to the pronounced tendency of many bioactive glasses to crystallize upon heat treatment, 3D scaffolds have not been much exploited commercially. Here, we investigate the influence of crystallization on the sintering behavior of several bioactive glasses. In a series of mixed‐alkali glasses an increased CaO/alkali metal oxide ratio improved sintering compared to Bioglass 45S5, where dense sintering was inhibited. Addition of small amounts of calcium fluoride helped to keep melting and sintering temperatures low. Unlike glass 13‐93, these new glasses crystallized during sintering but this did not prevent densification. Variation in bioactive glass particle size allowed for fine‐tuning the microporosity resulting from the sintering process.
|
Jul 2019
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[13241]
Open Access
Abstract: Bioglass® was the first material to form a stable chemical bond with human tissue. Since its discovery, a key goal was to produce three-dimensional (3D) porous scaffolds which can host and guide tissue repair, in particular, regeneration of long bone defects resulting from trauma or disease. Producing 3D scaffolds from bioactive glasses is challenging because of crystallization events that occur while the glass particles densify at high temperatures. Bioactive glasses such as the 13–93 composition can be sintered by viscous flow sintering at temperatures above the glass transition onset (Tg) and below the crystallization temperature (Tc). There is, however, very little literature on viscous flow sintering of bioactive glasses, and none of which focuses on the viscous flow sintering of glass scaffolds in four dimensions (4D) (3D + time). Here, high-resolution synchrotron-sourced X-ray computed tomography (sCT) was used to capture and quantify viscous flow sintering of an additively manufactured bioactive glass scaffold in 4D. In situ sCT allowed the simultaneous quantification of individual particle (local) structural changes and the scaffold's (global) dimensional changes during the sintering cycle. Densification, calculated as change in surface area, occurred in three distinct stages, confirming classical sintering theory. Importantly, our observations show for the first time that the local and global contributions to densification are significantly different at each of these stages: local sintering dominates stages 1 and 2, while global sintering is more prevalent in stage 3. During stage 1, small particles coalesced to larger particles because of their higher driving force for viscous flow at lower temperatures, while large angular particles became less faceted (angular regions had a local small radius of curvature). A transition in the rate of sintering was then observed in which significant viscous flow occurred, resulting in large reduction of surface area, total strut volume, and interparticle porosity because the majority of the printed particles coalesced to become continuous struts (stage 2). Transition from stage 2 to stage 3 was distinctly obvious when interparticle pores became isolated and closed, while the sintering rate significantly reduced. During stage 3, at the local scale, isolated pores either became more spherical or reduced in size and disappeared depending on their initial morphology. During stage 3, sintering of the scaffolds continued at the strut level, with interstrut porosity reducing, while globally the strut diameter increased in size, suggesting overall shrinkage of the scaffold with the flow of material via the strut contacts.
This study provides novel insights into viscous flow in a complex non-idealized construct, where, locally, particles are not spherical and are of a range of sizes, leading to a random distribution of interparticle porosity, while globally, predesigned porosity between the struts exists to allow the construct to support tissue growth. This is the first time that the three stages of densification have been captured at the local and global scales simultaneously. The insights provided here should accelerate the development of 3D bioactive glass scaffolds.
|
Jun 2019
|
|
B16-Test Beamline
|
Diamond Proposal Number(s):
[14877]
Abstract: 3D printing techniques are utilized to produce biomaterial scaffolds with porous architectures that enable cell attachment, biological factors, and appropriate mechanical strength. As the basic building block of a scaffold, the individual filaments should have sufficient mechanical properties, comprising high compressive loading, and fracture resistance to mimic the natural tissue organisation. In this contribution, process–structure–property relationships in melt extruded polycaprolactone filaments are investigated by considering crystalline features, tensile properties, and an array of processing parameters. The tensile properties of the filaments are improved significantly with relatively higher screw rotational speed and relatively lower processing temperature resulting in considerable increase in Young's modulus. The favorable properties are attributed to the increased crystal volume fraction and anisotropy. Thus, this study provides initial pathways for the potential control of mechanical properties of bioscaffolds via engineering crystalline structural features in printed filaments.
|
May 2018
|
|
B16-Test Beamline
|
Diamond Proposal Number(s):
[14877]
Abstract: Screw-assisted material extrusion technique is developed for tissue engineering applications to produce scaffolds with well-defined multiscale microstructural features and tailorable mechanical properties. In this study, in situ time-resolved synchrotron diffraction is employed to probe extrusion-based 3D printing of polycaprolactone (PCL) filaments. Time-resolved X-ray diffraction measurements reveals the progress of overall crystalline structural evolution of PCL during 3D printing. Particularly, in situ experimental observations provide strong evidence for the development of strong directionality of PCL crystals during the extrusion driven process. Results also show the evidence for the realization of anisotropic structural features through the melt extrusion-based 3D printing, which is a key development toward mimicking the anisotropic properties and hierarchical structures of biological materials in nature, such as human tissues.
|
Dec 2017
|
|