I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[24219, 31681]
Abstract: Wide bandgap oxide semiconductors have gained significant attention in the fields from flat panel displays to solar cells, but their uses have been limited by the lack of high mobility p-type oxide semiconductors. Recently, β-phase TeO2 has been identified as a promising p-type oxide semiconductor with exceptional device performance. In this Letter, we report on the electronic structure of β-TeO2 studied by a combination of high-resolution x-ray spectroscopy and hybrid density functional theory calculations. The bulk bandgap of β-TeO2 is determined to be 3.7 eV. Direct comparisons between experimental and computational results demonstrate that the top of a valence band (VB) of β-TeO2 is composed of the hybridized Te 5s, Te 5p, and O 2p states, whereas a conduction band (CB) is dominated by unoccupied Te 5p states. The hybridization between spatially dispersive Te 5s2 states and O 2p orbitals helps us to alleviate the strong localization in the VB, leading to small hole effective mass and high hole mobility in β-TeO2. The Te 5p states provide stabilizing effect to the hybridized Te 5s-O 2p states, which is enabled by structural distortions of a β-TeO2 lattice. The multiple advantages of large bandgap, high hole mobility, two-dimensional structure, and excellent stability make β-TeO2 a highly competitive material for next-generation opto-electronic devices.
|
Mar 2023
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[24219, 31069]
Abstract: Ga
2
O
3
is emerging as a promising wide band-gap semiconductor for high-power electronics and deep ultraviolet optoelectronics. It is highly desirable to dope it with controllable carrier concentrations for different device applications. This work reports a combined photoemission spectroscopy and theoretical calculation study on the electronic structure of Si doped
Ga
2
O
3
films with carrier concentration varying from
4.6
×
10
18
c
m
−
3
to
2.6
×
10
20
c
m
−
3
. Hard x-ray photoelectron spectroscopy was used to directly measure the widening of the band gap as a result of occupation of conduction band and band-gap renormalization associated with many-body interactions. A large band-gap renormalization of 0.3 eV was directly observed in heavily doped
Ga
2
O
3
. Supplemented with hybrid density functional theory calculations, we demonstrated that the band-gap renormalization results from the decrease in energy of the conduction band edge driven by the mutual electrostatic interaction between added electrons. Moreover, our work reveals that Si is a superior dopant over Ge and Sn, because
Si
3
s
forms a resonant donor state above the conduction band minimum, leaving the host conduction band mostly unperturbed and a high mobility is maintained though the doping level is high. Insights of the present work have significant implications in doping optimization of
Ga
2
O
3
and realization of optoelectronic devices.
|
Nov 2022
|
|
I09-Surface and Interface Structural Analysis
|
Hongxia
Wang
,
Meiyan
Cui
,
Gaoliang
Fu
,
Jiaye
Zhang
,
Xingyu
Ding
,
Irene
Azaceta
,
Matthew
Bugnet
,
Demie M.
Kepaptsoglou
,
Vlado K.
Lazarov
,
Víctor A.
De La Pena O'Shea
,
Freddy E.
Oropeza
,
Kelvin H. L.
Zhang
Abstract: The design of heterostructured transition metal-based electrocatalysts with controlled composition and interfaces is key to increasing the efficiency of the water electrolysis and the elucidation of reaction mechanisms. In this work, we report the synthesis of well-controlled vertically aligned Ni/NiO nanocomposites consisting of Ni nanoclusters embedded in NiO, which result in highly efficient electrocatalysts for overall water splitting. We show that such a high catalytic efficiency toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) originates from a synergetic effect at Ni/NiO interfaces that significantly reduces the energy barrier for water dissociation, and favours the formation of reactive H* intermediates on the Ni side of the interface, and OHads on the NiO side of the interface. A study of water chemisorption based on near-ambient pressure photoelectron spectroscopy indicates that the abundant hetero-interfaces in Ni/NiO nanocomposite promote the dissociation of water with a three-fold increase in the surface concentration of OHads compared with pure NiO. Density functional theory calculations indicate that Ni/NiO interface leads to the reduction of the water dissociation energy barrier due to a high concentration of oxygen vacancies at NiO side of the interface, whereas the formation of highly active metallic Ni sites with an optimal value of Gibbs free energy of H* (ΔGH* = −0.16 eV) owes to a favourable adjustment of the electron energetics at the interface, thus accelerating the overall electrochemical water splitting.
|
Sep 2022
|
|
I06-Nanoscience
|
Dong
Li
,
Bonan
Zhu
,
Dirk
Backes
,
Larissa S. I.
Veiga
,
Tien-Lin
Lee
,
Hongguang
Wang
,
Qian
He
,
Pinku
Roy
,
Jiaye
Zhang
,
Jueli
Shi
,
Aiping
Chen
,
Peter A.
Van Aken
,
Quanxi
Jia
,
Sarnjeet S.
Dhesi
,
David O.
Scanlon
,
Kelvin H. L.
Zhang
,
Weiwei
Li
Diamond Proposal Number(s):
[25425, 26901, 29616]
Abstract: Strain engineering of epitaxial transition metal oxide heterostructures offers an intriguing opportunity to control electronic structures by modifying the interplay between spin, charge, orbital, and lattice degrees of freedom. Here, we demonstrate that the electronic structure, magnetic and transport properties of
La
0.9
Ba
0.1
MnO
3
thin films can be effectively controlled by epitaxial strain. Spectroscopic studies and first-principles calculations reveal that the orbital occupancy in Mn
e
g
orbitals can be switched from the
d
3
z
2
−
r
2
orbital to the
d
x
2
−
y
2
orbital by varying the strain from compressive to tensile. The change of orbital occupancy associated with Mn
3
d
-O
2
p
hybridization leads to dramatic modulation of the magnetic and electronic properties of strained
La
0.9
Ba
0.1
MnO
3
thin films. Under moderate tensile strain, an emergent ferromagnetic insulating state with an enhanced ferromagnetic Curie temperature of 215 K is achieved. These findings not only deepen our understanding of electronic structures, magnetic and transport properties in the
La
0.9
Ba
0.1
MnO
3
system, but also demonstrate the use of epitaxial strain as an effective knob to tune the electronic structures and related physical properties for potential spintronic device applications.
|
Apr 2022
|
|
I09-Surface and Interface Structural Analysis
|
Jiaye
Zhang
,
Joe
Willis
,
Zhenni
Yang
,
Xu
Lian
,
Wei
Chen
,
Lai-Sen
Wang
,
Xiangyu
Xu
,
Tien-Lin
Lee
,
Lang
Chen
,
David O.
Scanlon
,
Kelvin H. I.
Zhang
Diamond Proposal Number(s):
[24219]
Open Access
Abstract: Deep UV transparent thin films have recently attracted considerable attention owing to their potential in UV and organic-based optoelectronics. Here, we report the achievement of a deep UV transparent and highly conductive thin film based on Si-doped Ga2O3 (SGO) with high conductivity of 2500 S/cm. The SGO thin films exhibit high transparency over a wide spectrum ranging from visible light to deep UV wavelength and, meanwhile, have a very low work-function of approximately 3.2 eV. A combination of photoemission spectroscopy and theoretical studies reveals that the delocalized conduction band derived from Ga 4s orbitals is responsible for the Ga2O3 films’ high conductivity. Furthermore, Si is shown to act as an efficient shallow donor, yielding high mobility up to approximately 60 cm2/Vs. The superior optoelectronic properties of SGO films make it a promising material for use as electrodes in high-power electronics and deep UV and organic-based optoelectronic devices.
|
Mar 2022
|
|
I09-Surface and Interface Structural Analysis
|
Jueli
Shi
,
Ethan A.
Rubinstein
,
Weiwei
Li
,
Jiaye
Zhang
,
Ye
Yang
,
Tien-Lin
Lee
,
Changdong
Qin
,
Pengfei
Yan
,
Judith L.
Macmanus-Driscoll
,
David O.
Scanlon
,
Kelvin H.l.
Zhang
Diamond Proposal Number(s):
[24219]
Open Access
Abstract: Oxide semiconductors are key materials in many technologies from flat-panel displays,solar cells to transparent electronics. However, many potential applications are hindered by the lack of high mobility p-type oxide semiconductors due to the localized O-2p derived valence band (VB) structure. In this work, the VB structure modulation is reported for perovskite Ba2BiMO6 (M = Bi, Nb, Ta) via the Bi 6s2 lone pair state to achieve p-type oxide semiconductors with high hole mobility up to 21 cm2 V−1 s−1, and optical bandgaps widely varying from 1.5 to 3.2 eV. Pulsed laser deposition is used to grow high quality epitaxial thin films. Synergistic combination of hard x-ray photoemission, x-ray absorption spectroscopies, and density functional theory calculations are used to gain insight into the electronic structure of Ba2BiMO6. The high mobility is attributed to the highly dispersive VB edges contributed from the strong coupling of Bi 6s with O 2p at the top of VB that lead to low hole effective masses (0.4–0.7 me). Large variation in bandgaps results from the change in the energy positions of unoccupied Bi 6s orbital or Nb/Ta d orbitals that form the bottom of conduction band. P–N junction diode constructed with p-type Ba2BiTaO6 and n-type Nb doped SrTiO3 exhibits high rectifying ratio of 1.3 × 104 at ±3 V, showing great potential in fabricating high-quality devices. This work provides deep insight into the electronic structure of Bi3+ based perovskites and guides the development of new p-type oxide semiconductors.
|
Jan 2022
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[19191]
Abstract: CuBi2O4 exhibits significant potential for the photoelectrochemical (PEC) conversion of solar energy into chemical fuels, owing to its extended visible-light absorption and positive flat band potential vs the reversible hydrogen electrode. A detailed understanding of the fundamental electronic structure and its correlation with PEC activity is of significant importance to address limiting factors, such as poor charge carrier mobility and stability under PEC conditions. In this study, the electronic structure of CuBi2O4 has been studied by a combination of hard X-ray photoemission spectroscopy, resonant photoemission spectroscopy, and X-ray absorption spectroscopy (XAS) and compared with density functional theory (DFT) calculations. The photoemission study indicates that there is a strong Bi 6s–O 2p hybrid electronic state at 2.3 eV below the Fermi level, whereas the valence band maximum (VBM) has a predominant Cu 3d–O 2p hybrid character. XAS at the O K-edge supported by DFT calculations provides a good description of the conduction band, indicating that the conduction band minimum is composed of unoccupied Cu 3d–O 2p states. The combined experimental and theoretical results suggest that the low charge carrier mobility for CuBi2O4 derives from an intrinsic charge localization at the VBM. Also, the low-energy visible-light absorption in CuBi2O4 may result from a direct but forbidden Cu d–d electronic transition, leading to a low absorption coefficient. Additionally, the ionization potential of CuBi2O4 is higher than that of the related binary oxide CuO or that of NiO, which is commonly used as a hole transport/extraction layer in photoelectrodes. This work provides a solid electronic basis for topical materials science approaches to increase the charge transport and improve the photoelectrochemical properties of CuBi2O4-based photoelectrodes.
|
Sep 2020
|
|
I06-Nanoscience
|
Weiwei
Li
,
Bonan
Zhu
,
Ruixue
Zhu
,
Qiang
Wang
,
Ping
Lu
,
Yuanwei
Sun
,
Clodomiro
Cafolla
,
Zhimin
Qi
,
Aiping
Chen
,
Peng
Gao
,
Haiyan
Wang
,
Qing
He
,
Kelvin H. L.
Zhang
,
Judith L.
Macmanus‐driscoll
Diamond Proposal Number(s):
[17284]
Open Access
Abstract: Control of BO6 octahedral rotations at the heterointerfaces of dissimilar ABO3 perovskites has emerged as a powerful route for engineering novel physical properties. However, its impact length scale is constrained at 2–6 unit cells close to the interface and the octahedral rotations relax quickly into bulk tilt angles away from interface. Here, a long‐range (up to 12 unit cells) suppression of MnO6 octahedral rotations in La0.9Ba0.1MnO3 through the formation of superlattices with SrTiO3 can be achieved. The suppressed MnO6 octahedral rotations strongly modify the magnetic and electronic properties of La0.9Ba0.1MnO3 and hence create a new ferromagnetic insulating state with enhanced Curie temperature of 235 K. The emergent properties in La0.9Ba0.1MnO3 arise from a preferential occupation of the out‐of‐plane Mn d 3z 2−r 2 orbital and a reduced Mn eg bandwidth, induced by the suppressed octahedral rotations. The realization of long‐range tuning of BO6 octahedra via superlattices can be applicable to other strongly correlated perovskites for exploring new emergent quantum phenomena.
|
Aug 2020
|
|
I06-Nanoscience
|
Weiwei
Li
,
Bonan
Zhu
,
Qian
He
,
Albina Y.
Borisevich
,
Chao
Yun
,
Rui
Wu
,
Ping
Lu
,
Zhimin
Qi
,
Qiang
Wang
,
Aiping
Chen
,
Haiyan
Wang
,
Stuart A.
Cavill
,
Kelvin H. L.
Zhang
,
Judith L.
Macmanus‐driscoll
Diamond Proposal Number(s):
[17284]
Open Access
Abstract: Ultrathin epitaxial films of ferromagnetic insulators (FMIs) with Curie temperatures near room temperature are critically needed for use in dissipationless quantum computation and spintronic devices. However, such materials are extremely rare. Here, a room‐temperature FMI is achieved in ultrathin La0.9Ba0.1MnO3 films grown on SrTiO3 substrates via an interface proximity effect. Detailed scanning transmission electron microscopy images clearly demonstrate that MnO6 octahedral rotations in La0.9Ba0.1MnO3 close to the interface are strongly suppressed. As determined from in situ X‐ray photoemission spectroscopy, O K‐edge X‐ray absorption spectroscopy, and density functional theory, the realization of the FMI state arises from a reduction of Mn eg bandwidth caused by the quenched MnO6 octahedral rotations. The emerging FMI state in La0.9Ba0.1MnO3 together with necessary coherent interface achieved with the perovskite substrate gives very high potential for future high performance electronic devices.
|
Nov 2019
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[21432]
Abstract: This work reports a systematical study on the relationship of electronic structure to oxygen evolution reaction (OER) activity of NixCo3-xO4 (x=0-1) mixed oxides. The specific OER activity is substantially increased by 16 times from 0.02 mA cm-2BET for pure Co3O4 to 0.32 mA cm-2BET for x=1 at an overpotential of 0.4 V and exhibits a strong correlation with the amount of Ni ions in +3 oxidation state. X-ray spectroscopic study reveals that inclusion of Ni3+ ions upshifts the occupied valence band maximum (VBM) by 0.27 eV toward the Fermi level (EF), and creates a new hole (unoccupied) state located ~1 eV above the EF. Such electronic features favour the adsorption of OH surface intermediates on NixCo3-xO4, resulting in enhanced OER. Furthermore, the emerging hole state effectively reduces the energy barrier for electron transfer from 1.19 eV to 0.39 eV, and thereby improves the kinetics for OER. The electronic structure features that lead to a higher OER in NixCo3-xO4 can be extended to other transition metal oxides for rational design of highly active catalysts.
|
Aug 2019
|
|