B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
Wenyuan
Huang
,
Meng
He
,
Bing
An
,
Yinlin
Chen
,
Xue
Han
,
Lan
An
,
Meredydd
Kippax-Jones
,
Jiangnan
Li
,
Yuhang
Yang
,
Mark D.
Frogley
,
Cheng
Li
,
Danielle
Crawshaw
,
Pascal
Manuel
,
Svemir
Rudic
,
Yongqiang
Chen
,
Ian
Silverwood
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Ben F.
Spencer
,
Marek
Nikiel
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[37155, 36474]
Open Access
Abstract: Capture of trace benzene is an important and challenging task. Metal–organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti8O8(OH)4(BDC)6 where H2BDC is 1,4-benzenedicarboxylic acid). At 298 K, MIL-125-Zn exhibits a benzene uptake of 7.63 mmol g−1 at 1.2 mbar and 5.33 mmol g−1 at 0.12 mbar, and breakthrough experiments confirm the removal of trace benzene (from 5 to <0.5 ppm) from air (up to 111,000 min g−1 of metal–organic framework), even after exposure to moisture. The binding of benzene to the defect and open Zn(II) sites at low pressure has been visualized by diffraction, scattering and spectroscopy. This work highlights the importance of fine-tuning pore chemistry for designing adsorbents for the removal of air pollutants.
|
Nov 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
David
Brooks
,
Meng
He
,
Yinlin
Chen
,
Wenyuan
Huang
,
Boya
Tang
,
Bing
An
,
Xue
Han
,
Meredydd
Kippax-Jones
,
Mark D.
Frogley
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Svemir
Rudic
,
Yongqiang
Chen
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Catherine
Dejoie
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[33115, 30398]
Open Access
Abstract: The functionalization of metal–organic frameworks (MOFs) to enhance the adsorption of benzene at trace levels remains a significant challenge. Here, we report the exceptional adsorption of trace benzene in a series of zirconium-based MOFs functionalized with chloro groups. Notably, MFM-68-Cl2, constructed from an anthracene linker incorporating chloro groups, exhibits a remarkable benzene uptake of 4.62 mmol g–1 at 298 K and 0.12 mbar, superior to benchmark materials. In situ synchrotron X-ray diffraction, Fourier transform infrared microspectroscopy, and inelastic neutron scattering, coupled with density functional theory modeling, reveal the mechanism of binding of benzene in these materials. Overall, the excellent adsorption performance is promoted by an unprecedented cooperation between chloro-groups, the optimized pore size, aromatic functionality, and the flexibility of the linkers in response to benzene uptake in MFM-68-Cl2. This study represents the first example of enhanced adsorption of trace benzene promoted by −CH···Cl and Cl···π interactions in porous materials.
|
Oct 2024
|
|
I11-High Resolution Powder Diffraction
I12-JEEP: Joint Engineering, Environmental and Processing
|
Kay
Song
,
Guanze
He
,
Abdallah
Reza
,
Tamas
Ungar
,
Phani
Karamched
,
David
Yang
,
Ivan
Tolkachev
,
Kenichiro
Mizohata
,
Stephen P.
Thompson
,
Eamonn T.
Connolly
,
Robert C.
Atwood
,
Stefan
Michalik
,
David E. J.
Armstrong
,
Felix
Hofmann
Diamond Proposal Number(s):
[28444, 32094]
Open Access
Abstract: Severe plastic deformation changes the microstructure and properties of steels, which may be favourable for their use in structural components of nuclear reactors. In this study, high-pressure torsion (HPT) was used to refine the grain structure of Eurofer-97, a ferritic/martensitic steel. Electron microscopy and X-ray diffraction were used to characterise the microstructural changes. Following HPT at room temperature to a maximum shear strain of 230, the average grain size reduced by a factor of ~30, with a marked increase in high-angle grain boundaries. Dislocation density also increased by more than one order of magnitude. The thermal stability of the deformed material was investigated via in-situ annealing during synchrotron X-ray diffraction. This revealed substantial recovery between 450 K – 800 K. Irradiation with 20 MeV Fe-ions to ~0.1 dpa caused a 20% reduction in dislocation density compared to the as-deformed material. However, HPT deformation prior to irradiation only had a minor effect in mitigating the irradiation-induced reductions in thermal diffusivity and surface acoustic wave velocity of the material. Microstructural and material property changes are dominated by deformation compared to irradiation. In light of this, the benefits of using HPT to improve the irradiation resistance of Eurofer-97 are limited. These results provide a multi-faceted view of the changes in ferritic/martensitic steels due to severe plastic deformation, and how these changes can be used to alter material properties.
|
Jul 2024
|
|
E02-JEM ARM 300CF
I11-High Resolution Powder Diffraction
|
Eu-Pin
Tien
,
Guanhai
Cao
,
Yinlin
Chen
,
Nick
Clark
,
Evan
Tillotson
,
Duc-The
Ngo
,
Joseph H.
Carter
,
Stephen P.
Thompson
,
Chiu C.
Tang
,
Christopher
Allen
,
Sihai
Yang
,
Martin
Schroeder
,
Sarah J.
Haigh
Diamond Proposal Number(s):
[29225, 30737]
Open Access
Abstract: This work reports the thermal and electron beam stabilities of a series of isostructural metal-organic frameworks (MOFs) of type MFM-300(M), where M = Al, Ga, In, or Cr. MFM-300(Cr) was most electron beam stable, having an unusually high critical electron fluence of 1111 e-·Å-2 while the Group 13 element MOFs were found to be less stable. Within Group 13, MFM-300(Al) had the highest critical electron fluence of 330 e-·Å-2, compared to 189 e-·Å-2 and 147 e-·Å-2 for the Ga and In MOFs respectively. For all four MOFs, electron beam-induced structural degradation was independent of crystal size and was highly anisotropic, with the one-dimensional pore channels being the most stable, although the length and width of the channels decreased during electron beam irradiation. Notably, MFM-300(Cr) was found to retain crystallinity while shrinking up to 10%. Thermal stability was studied using in situ synchrotron X-ray diffraction at elevated temperature which revealed critical temperatures for crystal degradation to be 605, 570, 490 and 480°C for Al, Cr, Ga, and In, respectively. The pore channel diameters contracted by ~0.5% on desorption of solvent species but thermal degradation at higher temperatures was isotropic. The observed electron stabilities were found to scale with the relative inertness of the cations and correlate well to the measured lifetime of the materials when used as photocatalysts.
|
Jul 2024
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Lutong
Shan
,
Yujie
Ma
,
Shaojun
Xu
,
Meng
Zhou
,
Meng
He
,
Alena M.
Sheveleva
,
Rongsheng
Cai
,
Daniel
Lee
,
Yongqiang
Chen
,
Boya
Tang
,
Bing
Han
,
Yinlin
Chen
,
Lan
An
,
Tianze
Zhou
,
Martin
Wilding
,
Alexander S.
Eggeman
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Sarah J.
Haigh
,
Xinchen
Kang
,
Buxing
Han
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[33115, 31729]
Open Access
Abstract: The design and preparation of efficient catalysts for ammonia production under mild conditions is a desirable but highly challenging target. Here, we report a series of single-atom catalysts [M-SACs, M = Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Mo(II)] derived from UiO-66 containing structural defects and their application to electrochemical reduction of nitrate (NO3-) to ammonia (NH3). Cu-SAC and Fe-SAC exhibit remarkable yield rates for NH3 production of 30.0 and 29.0 mg h−1 cm−2, respectively, with a high Faradaic efficiency (FENH3) of over 96% at −1.0 V versus the reversible hydrogen electrode. Importantly, their catalytic performance can be retained in various simulated wastewaters. Complementary experiments confirmed the nature of single-atom sites within these catalysts and the binding domains of NO3- in UiO-66-Cu. In situ spectroscopic techniques, coupled with density functional theory calculations confirm the strong binding of NO3- and the formation of reaction intermediates, thus facilitating the catalytic conversion to NH3.
|
Jun 2024
|
|
I11-High Resolution Powder Diffraction
|
Martin
Schroeder
,
Christopher
Marsh
,
Xue
Han
,
Zhenzhong
Lu
,
Ivan
Da Silva
,
Yongqiang
Chen
,
Luke L.
Daemen
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Anibal Javier
Ramirez-Cuesta
,
Sihai
Yang
Open Access
Abstract: The functionalisation of organic linkers in metal-organic frameworks (MOFs) to improve gas uptake is well-documented. Although the positive role of free carboxylic acid sites in MOFs for binding gas molecules has been proposed in computational studies, relatively little experimental evidence has been reported in support of this. Primarily this is because of the inherent synthetic difficulty to prepare MOF materials bearing free, accessible –COOH moieties which would normally bind to metal ions within the framework structure. Here, we describe the direct binding of CO2 and C2H2 molecules to the free -COOH sites within the pores of MFM-303(Al). MFM-303(Al) exhibits highly selective adsorption of CO2 and C2H2 with a high selectivity for C2H2 over C2H4. In situ synchrotron X-ray diffraction and inelastic neutron scattering, coupled with modelling, highlight the cooperative interactions of adsorbed CO2 and C2H2 molecules with free -COOH and -OH sites within MFM-303(Al), thus rationalising the observed high selectivity for gas separation.
|
Apr 2024
|
|
I11-High Resolution Powder Diffraction
|
Claire A.
Murray
,
Project M
Scientists
,
Laura
Holland
,
Rebecca
O'Brien
,
Alice
Richards
,
Annabelle
Baker
,
Mark
Basham
,
David
Bond
,
Leigh D.
Connor
,
Sarah J.
Day
,
Jacob
Filik
,
Stuart
Fisher
,
Peter
Holloway
,
Karl
Levik
,
Ronaldo
Mercado
,
Jonathan
Potter
,
Chiu C.
Tang
,
Stephen P.
Thompson
,
Julia E.
Parker
Diamond Proposal Number(s):
[15723]
Open Access
Abstract: Calcite and vaterite crystallisation is strongly influenced by the presence of additives during the reaction process, as demonstrated by organic molecules in biogenic calcium carbonate formation. The effect of additives on the lattice parameters of calcite and vaterite in syntheses are frequently reported, but only as discrete studies discussing a single polymorph. The intertwined nature of these polymorphs, due to their shared reaction pathway, is rarely discussed. In this work we report the results of a large scale citizen science project to explore the influence of amino acids and related additives on both polymorphs, highlighting their differences and commonalities in terms of the effect on the lattice parameters and polymorph selectivity.
|
Jan 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
Yinlin
Chen
,
Yujie
Ma
,
Jamie
Bailey
,
Zi
Wang
,
Daniel
Lee
,
Alena M.
Sheveleva
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Mark D.
Frogley
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Ben F.
Spencer
,
Marek
Nikiel
,
Pascal
Manuel
,
Danielle
Crawshaw
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: Benzene is an important air pollutant and a key chemical feedstock for the synthesis of cyclohexane. Because of the small difference of 0.6°C in their boiling points, the separation of benzene and cyclohexane is extremely challenging. Here, we report the high adsorption of benzene at low pressure and efficient separation of benzene/cyclohexane, achieved by the control of pore chemistry of two families of robust metal-organic frameworks, UiO-66 and MFM-300. At 298 K, UiO-66-CuII shows an exceptional adsorption of benzene of 3.92 mmol g−1 at 1.2 mbar and MFM-300(Sc) exhibits a high selectivity of 166 for the separation of benzene/cyclohexane (v/v = 1/1) mixture. In situ synchrotron X-ray diffraction and neutron powder diffraction, and multiple spectroscopic techniques reveal the binding mechanisms of benzene and cyclohexane in these materials. We also report the first example of direct visualization of reversible binding of benzene at an open Cu(II) site within metal-organic frameworks.
|
Feb 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Jiangnan
Li
,
Gemma L.
Smith
,
Yinlin
Chen
,
Yujie
Ma
,
Meredydd
Kippax-Jones
,
Mengtian
Fan
,
Wanpeng
Lu
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sarah
Day
,
Stephen P.
Thompson
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuetos
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[28497, 29649]
Open Access
Abstract: We report reversible high capacity adsorption of SO2 in robust Zr-based metal-organic frameworks (MOFs). Zr-bptc (H4bptc = biphenyl-3,3’,5,5’-tetracarboxylic acid) shows a high SO2 uptake of 6.2 mmol g-1 at 0.1 bar and 298 K, reflecting excellent capture capability and removal of SO2 at low concentration (2500 ppm). Dynamic breakthrough experiments confirm that the introduction of amine, atomically-dispersed Cu(II) or heteroatomic sulphur sites into the pores enhance the capture of SO2 at low concentrations. The captured SO2 can be converted quantitatively to a pharmaceutical intermediate, aryl N-aminosulfonamide, thus converting waste to chemical values. In situ X-ray diffraction, infrared micro-spectroscopic and inelastic neutron scattering enable the visualisation of the binding domains of adsorbed SO2 molecules and host-guest binding dynamics in these materials at the atomic level. The refinement of pore environment plays a critical role in designing efficient sorbent materials.
|
Jun 2022
|
|
I11-High Resolution Powder Diffraction
|
Shanshan
Liu
,
Yinlin
Chen
,
Bin
Yue
,
Yuanxin
Nie
,
Yuchao
Chai
,
Guangjun
Wu
,
Jiangnan
Li
,
Xue
Han
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Naijia
Guan
,
Sihai
Yang
,
Landong
Li
Diamond Proposal Number(s):
[31365]
Abstract: Adsorptive separation of light hydrocarbons by porous solids provides an energy-efficient alternative to state-of-the-art cryogenic distillation. However, an optimal balance between the cost, performance and stability of the sorbent material is yet to be achieved for industrial applications. Here, we report the efficient separation of C2 and C3 hydrocarbons by a faujasite zeolite (Na-X, Si/Al=1.23). A tandem configuration of two fixed-beds packed with Na-X affords complete dynamic separation of the ternary mixture of C2H2/C2H4/C2H6 (1/49.5/49.5; v/v/v) under ambient conditions. Pressure-swing desorption on the latter fixed-bed gives ethylene (>99.50%, 1.80 mmol g-1) and ethane (>99.99%, 1.41 mmol g-1). In situ synchrotron X-ray powder diffraction revealed the binding sites for C2H2 and C2H4 in Na-X. This study highlights the potential application of commercial zeolites for challenging industrial separations.
|
May 2022
|
|