B21-High Throughput SAXS
|
Abstract: Polymerisation-induced self-assembly (PISA) has become widely recognised as a versatile and efficient strategy to prepare well-defined diblock copolymer nanoparticles in a range of solvents. In this article, we report the synthesis of anionic, sterically-stabilised, sulfonate-functional diblock copolymer nanoparticles via PISA using a reversible addition–fragmentation chain-transfer (RAFT) polymerisation formulation. Anionic poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) macromolecular chain-transfer agents (macro-CTAs) were synthesised via RAFT solution polymerisation followed by chain-extension with benzyl methacrylate (BzMA) in alcohol/water mixtures to form PKSPMA–PBzMA nanoparticles. The influence of solvent quality on the formation of these nanoparticles was investigated by judiciously changing the alcohol/water ratio, the alcohol co-solvent (ethanol or methanol) and relative copolymer composition. The resulting diblock copolymer nanoparticles were analysed by dynamic light scattering (DLS), transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and aqueous electrophoresis. The results demonstrated that nanoparticles with controllable diameters for a fixed copolymer composition can be prepared by altering the co-solvent composition. More specifically, when using different ratios of ethanol/water or methanol/water, the nanoparticle diameter can be tuned from approximately 20 to 200 nm with fixed copolymer composition. This indicates that the solvency of both the stabiliser and core-forming block has a marked impact on both the aggregation of polymer chains during self-assembly and the resulting nanoparticles. Additionally, these nanoparticles remain colloidally stable and highly anionic over a wide pH range from 4 to 10, as judged by aqueous electrophoresis.
|
Feb 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[9490, 10237]
Abstract: Binary mixtures of anionic and non-ionic macromolecular chain transfer agents (macro-CTAs) are utilized in order to rationally design diblock copolymer nanoparticles with tunable morphologies and anionic character via pseudo-living radical polymerization. More specifically, poly(methacrylic acid) (PMAA) and poly(glycerol monomethacrylate) (PGMA) macro-CTAs are pre-mixed prior to reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). This strategy facilitates the formation of PHPMA-based diblock copolymer spheres, worm-like micelles and vesicles via polymerization-induced self-assembly (PISA). The presence of the anionic PMAA stabilizer block has a dramatic impact on the resulting copolymer morphology, particularly if the degree of polymerization (DP) of the PMAA stabilizer chains is longer than that of the PGMA. Two phase diagrams have been constructed to investigate the effect of the relative proportion and molar mass of the two macro-CTAs. Such a systematic approach is essential for the reproducible synthesis of pure worm-like micelles, which occupy relatively narrow phase space. The rheological behavior of a series of soft, free-standing worm gels is investigated. Finally, such gels are examined as model matrices for the growth of biomimetic calcite crystals and the role of the anionic PMAA stabilizer chains in directing crystal growth is evaluated.
|
Aug 2019
|
|
I22-Small angle scattering & Diffraction
|
Open Access
Abstract: Reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate was used to prepare three poly(glycerol monomethacrylate)x–poly(2-hydroxypropyl methacrylate)y (denoted Gx-Hy or PGMA-PHPMA) diblock copolymers, namely G37-H80, G54-H140, and G71-H200. A master phase diagram was used to select each copolymer composition to ensure that a pure worm phase was obtained in each case, as confirmed by transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS) studies. The latter technique indicated a mean worm cross-sectional diameter (or worm width) ranging from 11 to 20 nm as the mean degree of polymerization (DP) of the hydrophobic PHPMA block was increased from 80 to 200. These copolymer worms form soft hydrogels at 20 °C that undergo degelation on cooling. This thermoresponsive behavior was examined using variable temperature DLS, oscillatory rheology, and SAXS. A 10% w/w G37-H80 worm dispersion dissociated to afford an aqueous solution of molecularly dissolved copolymer chains at 2 °C; on returning to ambient temperature, these chains aggregated to form first spheres and then worms, with the original gel strength being recovered. In contrast, the G54-H140 and G71-H200 worms each only formed spheres on cooling to 2 °C, with thermoreversible (de)gelation being observed in the former case. The sphere-to-worm transition for G54-H140 was monitored by variable temperature SAXS: these experiments indicated the gradual formation of longer worms at higher temperature, with a concomitant reduction in the number of spheres, suggesting worm growth via multiple 1D sphere–sphere fusion events. DLS studies indicated that a 0.1% w/w aqueous dispersion of G71-H200 worms underwent an irreversible worm-to-sphere transition on cooling to 2 °C. Furthermore, irreversible degelation over the time scale of the experiment was also observed during rheological studies of a 10% w/w G71-H200 worm dispersion. Shear-induced polarized light imaging (SIPLI) studies revealed qualitatively different thermoreversible behavior for these three copolymer worm dispersions, although worm alignment was observed at a shear rate of 10 s–1 in each case. Subsequently conducting this technique at a lower shear rate of 1 s–1 combined with ultra small-angle x-ray scattering (USAXS) also indicated that worm branching occurred at a certain critical temperature since an upturn in viscosity, distortion in the birefringence, and a characteristic feature in the USAXS pattern were observed. Finally, SIPLI studies indicated that the characteristic relaxation times required for loss of worm alignment after cessation of shear depended markedly on the copolymer molecular weight.
|
Oct 2018
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[10237]
Open Access
Abstract: A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], which was selected for its relatively high density. The hydrophilic stabilizer block was poly(glycerol monomethacrylate) [PGMA], which is a well-known non-ionic polymer that remains water-soluble over a wide range of temperatures. Four series of PGMAx–PTFEMAy nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100–1400) and characterized via transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). It was found that the degree of polymerization of both the PGMA stabilizer and core-forming PTFEMA had a strong influence on the mean particle diameter, which ranged from 20 to 250 nm. Furthermore, SAXS was used to determine radii of gyration of 1.46 to 2.69 nm for the solvated PGMA stabilizer blocks. Thus, the mean effective density of these sterically stabilized particles was calculated and determined to lie between 1.19 g cm–3 for the smaller particles and 1.41 g cm–3 for the larger particles; these values are significantly lower than the solid-state density of PTFEMA (1.47 g cm–3). Since analytical centrifugation requires the density difference between the particles and the aqueous phase, determining the effective particle density is clearly vital for obtaining reliable particle size distributions. Furthermore, selected DCP data were recalculated by taking into account the inherent density distribution superimposed on the particle size distribution. Consequently, the true particle size distributions were found to be somewhat narrower than those calculated using an erroneous single density value, with smaller particles being particularly sensitive to this artifact.
|
Jul 2016
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[9490]
Open Access
Abstract: Reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) is uti-lized to prepare a series of poly(stearyl methacrylate)-poly(benzyl methacrylate) (PSMA-PBzMA) diblock copolymer nano-objects at 90 °C directly in mineral oil. Polymerization-induced self-assembly (PISA) occurs under these conditions, with the resulting nanoparticles exhibiting spherical, worm-like or vesicular morphologies when using a relatively short PSMA13 mac-romolecular chain transfer agent (macro-CTA), as confirmed by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies. Only kinetically-trapped spherical nanoparticles are obtained when using longer macro-CTAs (e.g. PSMA18 or PSMA31), with higher mean degrees of polymerization (DPs) for the PBzMA core-forming block pro-ducing progressively larger spheres. SAXS is used for the first time to monitor the various morphological transitions that oc-cur in situ during the RAFT dispersion polymerization of BzMA when targeting either spheres or vesicles as the final copol-ymer morphology. This powerful characterization technique in combination with 1H NMR studies enables the evolution of particle diameter, mean aggregation number (Nagg), number of copolymer chains per unit surface area (Sagg) and the distance between copolymer chains at the core-shell interface (dint) to be monitored as a function of monomer conversion for kinet-ically-trapped spheres. Moreover, the gradual evolution of copolymer morphology during PISA is confirmed unequivocally, with approximate ‘lifetimes’ assigned to the intermediate pure sphere and worm morphologies when targeting PSMA13-PBzMA150 vesicles. Within vesicle phase space, the membrane thickness (Tm) increases linearly with PBzMA DP. Further-more, a combination of dynamic light scattering (DLS), TEM and both in situ and post mortem SAXS studies indicate that the lumen volume is reduced while the overall vesicle dimensions remain essentially constant. Thus the constrained vesicles grow inwards, as recently reported for an aqueous PISA formulation. This suggests a universal vesicle growth mechanism for all PISA formulations.
|
Apr 2016
|
|
I11-High Resolution Powder Diffraction
|
Yi-Yeoun
Kim
,
Mona
Semsarilar
,
Joseph D.
Carloni
,
Kang Rae
Cho
,
Alexander N.
Kulak
,
Iryna
Polishchuk
,
Coit T.
Hendley
,
Paul J. M.
Smeets
,
Lee
Fielding
,
Boaz
Pokroy
,
Chiu C.
Tang
,
Lara A.
Estroff
,
Shefford P.
Baker
,
Steven P.
Armes
,
Fiona
Meldrum
Open Access
Abstract: This article describes an experimentally versatile strategy for producing inorganic/organic nanocomposites, with control over the microstructure at the nano- and mesoscales. Taking inspiration from biominerals, CaCO3 is coprecipitated with anionic diblock copolymer worms or vesicles to produce single crystals of calcite occluding a high density of the organic component. This approach can also be extended to generate complex structures in which the crystals are internally patterned with nano-objects of differing morphologies. Extensive characterization of the nanocomposite crystals using high resolution synchrotron powder X-ray diffraction and vibrational spectroscopy demonstrates how the occlusions affect the short and long-range order of the crystal lattice. By comparison with nanocomposite crystals containing latex particles and copolymer micelles, it is shown that the effect of these occlusions on the crystal lattice is dominated by the interface between the inorganic crystal and the organic nano-objects, rather than the occlusion size. This is supported by in situ atomic force microscopy studies of worm occlusion in calcite, which reveal flattening of the copolymer worms on the crystal surface, followed by burial and void formation. Finally, the mechanical properties of the nanocomposite crystals are determined using nanoindentation techniques, which reveal that they have hardnesses approaching those of biogenic calcites.
|
Mar 2016
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[9490]
Open Access
Abstract: Soot formation in diesel engines is known to cause premature engine wear. Unfortunately, genuine diesel soot is expensive to generate, so carbon blacks are often used as diesel soot mimics. Herein, the suitability of a commercial carbon black (Regal 250R) as a surrogate for diesel soot dispersed in engine base oil is examined in the presence of two commonly used polymeric lubricant additives. The particle size, morphology, and surface composition of both substrates are assessed using BET surface area analysis, TEM, and XPS. The extent of adsorption of a poly(ethylene-co-propylene) (dOCP) statistical copolymer or a polystyrene-block-poly(ethylene-co-propylene) (PS−PEP) diblock copolymer onto carbon black or diesel soot from n-dodecane s compared indirectly using a supernatant depletion assay technique via UV spectroscopy. Thermogravimetric analysis is also used to directly determine the extent of copolymer adsorption. Degrees of dispersion are examined using optical microscopy, TEM, and analytical centrifugati n. SAXS studies reveal some structural differences between carbon black and diesel soot particles. The mean radius of gyration determined for the latter is significantly smaller than that calculated for the former, and in the absence of any copolymer, diesel soot suspended in n-dodecane forms relatively loose mass fractals compared to carbon black. SAXS provides evidence for copolymer adsorption and indicates that addition of either copolymer transforms the initially compact agglomerates into relatively loose aggregates. Addition of dOCP or PS−PEP does not significantly affect the structure of the carbon black primary particles, with similar results being observed for diesel soot. In favorable cases, remarkably similar data can be obtained for carbon black and diesel soot when using dOCP and PS−PEP as copolymer dispersants. However, it is not difficult to identify simple copolymer−particle−solvent combinations for which substantial differences can be observed. Such observations are most likely the result of issimilar surface chemistries, which can profoundly affect the colloidal stability.
|
Sep 2015
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[9490]
Open Access
Abstract: The solution behavior of a polystyrene–hydrogenated polyisoprene star diblock copolymer (Mn ∼ 384 K; 6 mol % polystyrene) is examined in nonpolar media. Variable temperature 1H NMR studies using deuterated n-dodecane confirm that the outer polystyrene blocks are only partially solvated in n-dodecane at 25 °C: the apparent polystyrene content of 3.2 ± 0.2 mol % remains essentially constant on heating up to 100 °C. Physical adsorption of this star diblock copolymer onto carbon black particles is examined, with particular attention being paid to the effect of copolymer concentration on colloidal stability. An isotherm is constructed for copolymer adsorption onto carbon black from n-dodecane at 20 °C using a supernatant depletion assay based on UV spectroscopy analysis of the aromatic chromophore in the polystyrene block. Langmuir-type adsorption is observed with a maximum adsorbed amount, Γ, of ∼2.2 ± 0.1 mg m–2. In addition, thermogravimetric analysis is used to directly determine the amount of adsorbed copolymer on the carbon black particles, which are essentially incombustible under an inert atmosphere. Analytical centrifugation, optical microscopy, and transmission electron microscopy studies indicate that the star diblock copolymer acts as an effective flocculant at low concentration, with steric stabilization only being observed above a certain critical copolymer concentration (∼5.5% w/w based on carbon black). This is attributed to the spatial location of the polystyrene block and the star copolymer architecture, which enables copolymer adsorption onto multiple carbon black particles at low coverage, leading to bridging flocculation. Above 5.5% w/w copolymer, the surface coverage is sufficiently high that all of the polystyrene “stickers” adsorb onto single carbon black particles, resulting in colloidally stable, sterically stabilized carbon black dispersions. Small-angle X-ray scattering (SAXS) is also used to characterize the copolymer-coated carbon black particles: this technique provides useful complementary insights regarding the rather subtle changes in the fractal morphology that occur with increasing copolymer concentration. Moreover, SAXS also provides direct evidence for the presence of the copolymer chains at the particle surface.
|
May 2015
|
|