I15-Extreme Conditions
|
Diamond Proposal Number(s):
[30712]
Open Access
Abstract: Polycrystalline diffraction is a robust methodology employed to assess elastic strain within crystalline components. The Extended Caking (exCaking) method represents a progression of this methodology beyond the conventional azimuthal segmentation (Caking) method for the quantification of elastic strains using Debye–Scherrer 2D X-ray diffraction rings. The proposed method is based on the premise that each complete diffraction ring contains comprehensive information about the complete elastic strain variation in the plane normal to the incident beam, which allows for the introduction of a novel algorithm that analyses Debye–Scherrer rings with complete angular variation using ellipse geometry, ensuring accuracy even for small eccentricity values and offering greater accuracy overall. The console application of the exCaking method allows for the accurate analysis of polycrystalline X-ray diffraction data according to the up-to-date rules presented in the project repository. This study presents both numerical and empirical examinations and error analysis to substantiate the method’s reliability and accuracy. A specific validation case study is also presented to analyze the distribution of residual elastic strains in terms of force balance in a Ti-6Al-4V titanium alloy bar plastically deformed by four-point bending.
|
Aug 2024
|
|
DIAD-Dual Imaging and Diffraction Beamline
|
Cyril
Besnard
,
Ali
Marie
,
Sisini
Sasidharan
,
Hans
Deyhle
,
Andrew M.
James
,
Sharif I.
Ahmed
,
Christina
Reinhard
,
Robert A.
Harper
,
Richard M.
Shelton
,
Gabriel
Landini
,
Alexander M.
Korsunsky
Diamond Proposal Number(s):
[28054]
Open Access
Abstract: The Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source (Didcot, U.K.) implements a correlative approach to the dynamic study of materials based on concurrent analysis of identical sample locations using complementary X-ray modalities to reveal structural detail at various length scales. Namely, the underlying beamline principle and its practical implementation allow the collocation of chosen regions within the sample and their interrogation using real-space imaging (radiography and tomography) and reciprocal space scattering (diffraction). The switching between the two principal modes is made smooth and rapid by design, so that the data collected is interlaced to obtain near-simultaneous multimodal characterization. Different specific photon energies are used for each mode, and the interlacing of acquisition steps allows conducting static and dynamic experiments. Building on the demonstrated realization of this state-of-the-art approach requires further refining of the experimental practice, namely, the methods for gauge volume collocation under different modes of beam–sample interaction. To address this challenge, experiments were conducted at DIAD devoted to the study of human dental enamel, a hierarchical structure composed of hydroxyapatite mineral nanocrystals, as a static sample previously affected by dental caries (tooth decay) as well as under dynamic conditions simulating the process of acid demineralization. Collocation and correlation were achieved between WAXS (wide-angle X-ray scattering), 2D (radiographic), and 3D (tomographic) imaging. While X-ray imaging in 2D or 3D modes reveals real-space details of the sample microstructure, X-ray scattering data for each gauge volume provided statistical nanoscale and ultrastructural polycrystal reciprocal-space information such as phase and preferred orientation (texture). Careful registration of the gauge volume positions recorded during the scans allowed direct covisualization of the data from two modalities. Diffraction gauge volumes were identified and visualized within the tomographic data sets, revealing the underlying local information to support the interpretation of the diffraction patterns. The present implementation of the 4D microscopy paradigm allowed following the progression of demineralization and its correlation with time-dependent WAXS pattern evolution in an approach that is transferable to other material systems.
|
Mar 2024
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[29256]
Open Access
Abstract: High-resolution spatial and temporal analysis and 3D visualization of time-dependent processes, such as human dental enamel acid demineralization, often present a challenging task. Overcoming this challenge often requires the development of special methods. Dental caries remains one of the most important oral diseases that involves the demineralization of hard dental tissues as a consequence of acid production by oral bacteria. Enamel has a hierarchically organized architecture that extends down to the nanostructural level and requires high resolution to study its evolution in detail. Enamel demineralization is a dynamic process that is best investigated with the help of in situ experiments. In previous studies, synchrotron tomography was applied to study the 3D enamel structure at certain time points (time-lapse tomography). Here, another distinct approach to time-evolving tomography studies is presented, whereby the sample image is reconstructed as it undergoes continuous rotation over a virtually unlimited angular range. The resulting (single) data set contains the data for multiple (potentially overlapping) intermediate tomograms that can be extracted and analyzed as desired using time-stepping selection of data subsets from the continuous fly-scan recording. One of the advantages of this approach is that it reduces the amount of time required to collect an equivalent number of single tomograms. Another advantage is that the nominal time step between successive reconstructions can be significantly reduced. We applied this approach to the study of acidic enamel demineralization and observed the progression of demineralization over time steps significantly smaller than the total acquisition time of a single tomogram, with a voxel size smaller than 0.5 μm. It is expected that the approach presented in this paper can be useful for high-resolution studies of other dynamic processes and for assessing small structural modifications in evolving hierarchical materials.
|
Feb 2024
|
|
B16-Test Beamline
|
Diamond Proposal Number(s):
[30460]
Open Access
Abstract: Current experimental and numerical quantification methods are limited in their ability to full-field mapping of the unpredictable distribution of all residual stress and permanent plastic strain components in additive manufacturing parts with discontinuous processing properties. To address this limitation, a tomographic eigenstrain (inherent strain) reconstruction method, that merges eigenstrain reconstruction with diffraction strain tomography for mapping volumetric distribution of all components of eigenstrains and corresponding elastic deformations like residual stresses non-destructively using minimum amount of tomographic scans is presented through numerical experiments, and then applied to the analysis of a CM 247 LC superalloy additive manufacturing part using diffraction strain tomography data. The method reconstructs all eigenstrain and corresponding residual stress components, parallel to the build direction, aligned with the experimental data component accurately, demonstrating its potential in optimizing the performance and reliability of parts designed for high-tech industries such as aerospace. Subsequent validations using the X-ray diffraction and neutron diffraction strain scanning techniques confirm the method's reliability in reconstructing residual stress components parallel to the plane of powder bed that are different from the experimental data component. Furthermore, the novel findings of this study reveal a characteristic residual stress distribution pattern within additive manufacturing parts particularly those featuring rectangular shapes. Microstructural analysis also validates eigenstrain distribution in accordance with the findings on the characteristic distribution of residual stresses, highlighting the significance of this method in advancing materials research and development.
|
Feb 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[34009, 32463]
Open Access
Abstract: Metal-organic frameworks (MOFs) have emerged as a versatile material platform for a wide range of applications. However, the development of practical devices is constrained by their inherently low mechanical stability. The synthesis of MOFs in a monolithic morphology represents a viable way for the transition of these materials from laboratory research to real-world applications. For the design of MOF-based devices, the mechanical characterization of such materials cannot be overlooked. In this regard, stress-strain relationships represent the most valuable tool for assessing the mechanical response of materials. Here, we use flat punch nanoindentation, micropillar compression and Raman microspectroscopy to investigate the stress-strain behaviour of MOF monoliths. A pseudo-plastic flow is observed under indentation, where the confining pressure prevents unstable crack propagation. Material flow is accommodated by grain boundary sliding, with occasional stepwise cracking to accommodate excessive stress building up. Micropillar compression reveals a brittle failure of ZIF-8, while plastic flow is observed for MIL-68.
|
Oct 2023
|
|
E01-JEM ARM 200CF
I08-1-Soft X-ray Ptychography
I13-2-Diamond Manchester Imaging
I14-Hard X-ray Nanoprobe
I18-Microfocus Spectroscopy
|
Cyril
Besnard
,
Ali
Marie
,
Sisini
Sasidharan
,
Petr
Buček
,
Jessica M.
Walker
,
Julia E.
Parker
,
Matthew C.
Spink
,
Robert A.
Harper
,
Shashidhara
Marathe
,
Kaz
Wanelik
,
Thomas E. J.
Moxham
,
Enrico
Salvati
,
Konstantin
Ignatyev
,
Michal M.
Klosowski
,
Richard M.
Shelton
,
Gabriel
Landini
,
Alexander M.
Korsunsky
Diamond Proposal Number(s):
[27749, 30684, 30691, 31005, 29256, 23873]
Open Access
Abstract: Caries, a major global disease associated with dental enamel demineralization, remains insufficiently understood to devise effective prevention or minimally invasive treatment. Understanding the ultrastructural changes in enamel is hampered by a lack of nanoscale characterization of the chemical spatial distributions within the dental tissue. This leads to the requirement to develop techniques based on various characterization methods. The purpose of the present study is to demonstrate the strength of analytic methods using a correlative technique on a single sample of human dental enamel as a specific case study to test the accuracy of techniques to compare regions in enamel. The science of the different techniques is integrated to genuinely study the enamel. The hierarchical structures within carious tissue were mapped using the combination of focused ion beam scanning electron microscopy with synchrotron X-ray tomography. The chemical changes were studied using scanning X-ray fluorescence (XRF) and X-ray wide-angle and small-angle scattering using a beam size below 80 nm for ångström and nanometer length scales. The analysis of XRF intensity gradients revealed subtle variations of Ca intensity in carious samples in comparison with those of normal mature enamel. In addition, the pathways for enamel rod demineralization were studied using X-ray ptychography. The results show the chemical and structural modification in carious enamel with differing locations. These results reinforce the need for multi-modal approaches to nanoscale analysis in complex hierarchically structured materials to interpret the changes of materials. The approach establishes a meticulous correlative characterization platform for the analysis of biomineralized tissues at the nanoscale, which adds confidence in the interpretation of the results and time-saving imaging techniques. The protocol demonstrated here using the dental tissue sample can be applied to other samples for statistical study and the investigation of nanoscale structural changes. The information gathered from the combination of methods could not be obtained with traditional individual techniques.
|
Jul 2023
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[25756]
Open Access
Abstract: Caries is a chronic disease that causes the alteration of the structure of dental tissues by acid dissolution (in enamel, dentine and cementum) and proteolytic degradation (dentine and cementum) and generates an important cost of care. There is a need to visualise and characterise the acid dissolution process on enamel due to its hierarchical structure leading to complex structural modifications. The process starts at the enamel surface and progresses into depth, which necessitates the study of the internal enamel structure. Artificial demineralisation is usually employed to simulate the process experimentally. In the present study, the demineralisation of human enamel was studied using surface analysis carried out with atomic force microscopy as well as 3D internal analysis using synchrotron X-ray tomography during acid exposure with repeated scans to generate a time-lapse visualisation sequence. Two-dimensional analysis from projections and virtual slices and 3D analysis of the enamel mass provided details of tissue changes at the level of the rods and inter-rod substance. In addition to the visualisation of structural modifications, the rate of dissolution was determined, which demonstrated the feasibility and usefulness of these techniques. The temporal analysis of enamel demineralisation is not limited to dissolution and can be applied to other experimental conditions for the analysis of treated enamel or remineralisation.
|
May 2023
|
|
B16-Test Beamline
DIAD-Dual Imaging and Diffraction Beamline
E01-JEM ARM 200CF
E02-JEM ARM 300CF
I08-Scanning X-ray Microscopy beamline (SXM)
I12-JEEP: Joint Engineering, Environmental and Processing
I13-1-Coherence
I13-2-Diamond Manchester Imaging
I14-Hard X-ray Nanoprobe
|
Open Access
Abstract: Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical–chemical–structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
|
Apr 2023
|
|
I08-1-Soft X-ray Ptychography
I14-Hard X-ray Nanoprobe
|
Cyril
Besnard
,
Ali
Marie
,
Sisini
Sasidharan
,
Petr
Buček
,
Jessica
Walker
,
Julia E.
Parker
,
Thomas E. J.
Moxham
,
Benedikt
Daurer
,
Burkhard
Kaulich
,
Majid
Kazemian
,
Richard M.
Shelton
,
Gabriel
Landini
,
Alexander M.
Korsunsky
Diamond Proposal Number(s):
[30684, 31005]
Open Access
Abstract: This study reports the characterisation of human dental enamel caries using synchrotron nanoscale correlative ptychography and spectroscopic mapping in combination with scanning electron microscopy. A lamella ̴2.4 µm thick was extracted from a carious enamel region of a tooth using focused ion beam-scanning electron microscopy and transferred to two synchrotron beamlines to perform hard X-ray nano-fluorescence spectroscopy simultaneously with differential phase contrast mapping at a beam size of 50 nm. Soft X-ray ptychography data was then reconstructed with a pixel size of 8 nm. The two dimensional variation in chemistry and structure of carious enamel was revealed at the nanoscale, namely, the organisation of hydroxyapatite nano-crystals within enamel rods was imaged together with the inter-rod region. Correlative use of electron and X-ray scanning microscopies for the same sample allowed visualisation of the connection between structure and composition as presented in a compound image where colour indicates the relative calcium concentration in the sample, as indicated by the calcium Kα fluorescence intensity and grey scale shows the nanostructure. This highlights the importance of advanced correlative imaging to investigate the complex structure-composition relationships in nanomaterials of natural or artificial origin.
|
Oct 2022
|
|
E01-JEM ARM 200CF
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[29256, 30666]
Open Access
Abstract: Dental caries is a widespread disease that damages teeth by heterogeneous dissolution. Conventional histology identifies different zones within carious lesions by their optical appearance, but fails to quantify the underlying nanoscale structural changes as a function of specific location, impeding better understanding of the demineralisation process. We employ detailed collocative analysis using different imaging modalities, resolutions and fields of view. Focused ion beam-scanning electron microscopy (FIB-SEM) reveals subsurface 3D nanostructure within milled micro-sized volumes, whilst X-ray tomography allows less destructive 3D imaging over large volumes. Correlative combination of these techniques reveals fine detail of enamel rods, inter-rod substance, sheaths, crystallites and voids as a function of location. The degree of enamel demineralisation within the body of the lesion, near its front, and at the surface is visualized in 3D. We thus establish the paradigm of dental 3D nano-histology as an advanced platform for quantitative evaluation of caries-induced structural modification.
|
Jun 2022
|
|