|
Jon
Agirre
,
Mihaela
Atanasova
,
Haroldas
Bagdonas
,
Charles B.
Ballard
,
Arnaud
Basle
,
James
Beilsten-Edmands
,
Rafael J.
Borges
,
David G.
Brown
,
J. Javier
Burgos-Marmol
,
John M.
Berrisford
,
Paul S.
Bond
,
Iracema
Caballero
,
Lucrezia
Catapano
,
Grzegorz
Chojnowski
,
Atlanta G.
Cook
,
Kevin D.
Cowtan
,
Tristan I.
Croll
,
Judit É.
Debreczeni
,
Nicholas E.
Devenish
,
Eleanor J.
Dodson
,
Tarik R.
Drevon
,
Paul
Emsley
,
Gwyndaf
Evans
,
Phil R.
Evans
,
Maria
Fando
,
James
Foadi
,
Luis
Fuentes-Montero
,
Elspeth F.
Garman
,
Markus
Gerstel
,
Richard J.
Gildea
,
Kaushik
Hatti
,
Maarten L.
Hekkelman
,
Philipp
Heuser
,
Soon Wen
Hoh
,
Michael A.
Hough
,
Huw T.
Jenkins
,
Elisabet
Jiménez
,
Robbie P.
Joosten
,
Ronan M.
Keegan
,
Nicholas
Keep
,
Eugene B.
Krissinel
,
Petr
Kolenko
,
Oleg
Kovalevskiy
,
Victor S.
Lamzin
,
David M.
Lawson
,
Andrey
Lebedev
,
Andrew G. W.
Leslie
,
Bernhard
Lohkamp
,
Fei
Long
,
Martin
Maly
,
Airlie
Mccoy
,
Stuart J.
Mcnicholas
,
Ana
Medina
,
Claudia
Millán
,
James W.
Murray
,
Garib N.
Murshudov
,
Robert A.
Nicholls
,
Martin E. M.
Noble
,
Robert
Oeffner
,
Navraj S.
Pannu
,
James M.
Parkhurst
,
Nicholas
Pearce
,
Joana
Pereira
,
Anastassis
Perrakis
,
Harold R.
Powell
,
Randy J.
Read
,
Daniel J.
Rigden
,
William
Rochira
,
Massimo
Sammito
,
Filomeno
Sanchez Rodriguez
,
George M.
Sheldrick
,
Kathryn L.
Shelley
,
Felix
Simkovic
,
Adam J.
Simpkin
,
Pavol
Skubak
,
Egor
Sobolev
,
Roberto A.
Steiner
,
Kyle
Stevenson
,
Ivo
Tews
,
Jens M. H.
Thomas
,
Andrea
Thorn
,
Josep Triviño
Valls
,
Ville
Uski
,
Isabel
Uson
,
Alexei
Vagin
,
Sameer
Velankar
,
Melanie
Vollmar
,
Helen
Walden
,
David
Waterman
,
Keith S.
Wilson
,
Martyn
Winn
,
Graeme
Winter
,
Marcin
Wojdyr
,
Keitaro
Yamashita
Open Access
Abstract: The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
|
Jun 2023
|
|
I03-Macromolecular Crystallography
|
Rebecca
Roddan
,
Altin
Sula
,
Daniel
Méndez-Sánchez
,
Fabiana
Subrizi
,
Benjamin R.
Lichman
,
Joseph
Broomfield
,
Michael
Richter
,
Jennifer N.
Andexer
,
John M.
Ward
,
Nicholas
Keep
,
Helen C.
Hailes
Diamond Proposal Number(s):
[23583]
Open Access
Abstract: The 1-aryl-tetrahydroisoquinoline (1-aryl-THIQ) moiety is found in many biologically active molecules. Single enantiomer chemical syntheses are challenging and although some biocatalytic routes have been reported, the substrate scope is limited to certain structural motifs. The enzyme norcoclaurine synthase (NCS), involved in plant alkaloid biosynthesis, has been shown to perform stereoselective Pictet–Spengler reactions between dopamine and several carbonyl substrates. Here, benzaldehydes are explored as substrates and found to be accepted by both wild-type and mutant constructs of NCS. In particular, the variant M97V gives a range of (1 S)-aryl-THIQs in high yields (48–99%) and e.e.s (79–95%). A co-crystallised structure of the M97V variant with an active site reaction intermediate analogue is also obtained with the ligand in a pre-cyclisation conformation, consistent with (1 S)-THIQs formation. Selected THIQs are then used with catechol O-methyltransferases with exceptional regioselectivity. This work demonstrates valuable biocatalytic approaches to a range of (1 S)-THIQs.
|
Nov 2020
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[17201]
Abstract: Norcoclaurine synthase (NCS) catalyzes a stereoselective
Pictet−Spengler reaction to give the key intermediate, (S)-norcoclaurine
in benzylisoquinoline alkaloid biosynthesis. This family of alkaloids
contains many bioactive molecules including morphine and berberine.
Recently, NCS has been demonstrated to accept a variety of aldehydes
and some ketones as substrates, leading to a range of chiral
tetrahydroisoquinoline (THIQ) products. Here, we report the unusual
acceptance of α-substituted aldehydes, in particular α-methyl-substituted
aldehydes, by wild-type Thalictrum flavum NCS (Δ33Tf NCS) to give
THIQ products. Moreover, the kinetic resolution of several α-
substituted aldehydes to give THIQs with two defined chiral centers
in a single step with high conversions was achieved. Several dopamine analogues were also accepted as substrates, and reactions
were amenable to scale up. Active site mutants of TfNCS were then used, which demonstrated the potential to enhance the
stereoselectivities in the reaction and improve yields. The rationale for the acceptance of these substrates and improved activity
with different mutants has been gained from a co-crystallized structure of Δ33TfNCS with a nonproductive mimic of a reaction
intermediate bound in the active site. Finally, molecular dynamics simulations were performed to study the binding of dopamine
and an α-substituted aldehyde and provided further insight into the reaction with these substrates.
|
Sep 2019
|
|
I02-Macromolecular Crystallography
|
Alice
Clark
,
Wilma Vree
Egberts
,
Frances D. L.
Kondrat
,
Gillian R.
Hilton
,
Nicholas J.
Ray
,
Ambrose R.
Cole
,
John A.
Carver
,
Justin L. P.
Benesch
,
Nicholas
Keep
,
Wilbert C.
Boelens
,
Christine
Slingsby
Diamond Proposal Number(s):
[7197]
Open Access
Abstract: Heterogeneity in small heat shock proteins (sHsps) spans multiple spatiotemporal regimes – from fast fluctuations of part of the protein, to conformational variability of tertiary structure, plasticity of the interfaces, and polydispersity of the inter-converting, and co-assembling oligomers. This heterogeneity and dynamic nature of sHsps has significantly hindered their structural characterisation. Atomic-coordinates are particularly lacking for vertebrate sHsps, where most available structures are of extensively truncated homomers. sHsps play important roles in maintaining protein levels in the cell and therefore in organismal health and disease. HspB2 and HspB3 are vertebrate sHsps that are found co-assembled in neuromuscular cells, and variants thereof are associated with disease. Here, we present the structure of human HspB2/B3, which crystallised as a hetero-tetramer in a 3:1 ratio. In the HspB2/B3 tetramer, the four α-crystallin domains (ACDs) assemble into a flattened tetrahedron which is pierced by two non-intersecting approximate dyads. Assembly is mediated by flexible “nuts and bolts” involving IXI/V motifs from terminal regions filling ACD pockets. Parts of the N-terminal region bind in an unfolded conformation into the anti-parallel shared ACD dimer grooves. Tracts of the terminal regions are not resolved, most likely due to their disorder in the crystal lattice. This first structure of a full-length human sHsp heteromer reveals the heterogeneous interactions of the terminal regions and suggests a plasticity that is important for the cytoprotective functions of sHsps.
|
Jun 2018
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12305]
Open Access
Abstract: Norcoclaurine synthase (NCS) is a Pictet-Spenglerase that catalyzes the first key step in plant benzylisoquinoline alkaloid metabolism, a compound family that includes bioactive natural products such as morphine. The enzyme has also shown great potential as a biocatalyst for the formation of chiral isoquinolines. Here we present new high-resolution X-ray crystallography data describing Thalictrum flavum NCS bound to a mechanism-inspired ligand. The structure supports two key features of the NCS “dopamine-first” mechanism: the binding of dopamine catechol to Lys-122 and the position of the carbonyl substrate binding site at the active site entrance. The catalytically vital residue Glu-110 occupies a previously unobserved ligand-bound conformation that may be catalytically significant. The potential roles of inhibitory binding and alternative amino acid conformations in the mechanism have also been revealed. This work significantly advances our understanding of the NCS mechanism and will aid future efforts to engineer the substrate scope and catalytic properties of this useful biocatalyst.
|
Sep 2017
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I24-Microfocus Macromolecular Crystallography
|
Tom
Northey
,
Herbert
Venthur
,
Filomena
De Biasio
,
Francois Xavier
Chauviac
,
Ambrose
Cole
,
Karlos Antonio Lisboa
Ribeiro
,
Gerarda
Grossi
,
Patrizia
Falabella
,
Linda M.
Field
,
Nicholas H.
Keep
,
Jing-Jiang
Zhou
Diamond Proposal Number(s):
[7197]
Open Access
Abstract: Aphids use chemical cues to locate hosts and find mates. The vetch aphid Megoura viciae feeds exclusively on the Fabaceae, whereas the currant-lettuce aphid Nasonovia ribisnigri alternates hosts between the Grossulariaceae and Asteraceae. Both species use alarm pheromones to warn of dangers. For N. ribisnigri this pheromone is a single component (E)-β-farnesene but M. viciae uses a mixture of (E)-β-farnesene, (−)-α-pinene, β-pinene, and limonene. Odorant-binding proteins (OBP) are believed to capture and transport such semiochemicals to their receptors. Here, we report the first aphid OBP crystal structures and examine their molecular interactions with the alarm pheromone components. Our study reveals some unique structural features: 1) the lack of an internal ligand binding site; 2) a striking groove in the surface of the proteins as a putative binding site; 3) the N-terminus rather than the C-terminus occupies the site closing off the conventional OBP pocket. The results from fluorescent binding assays, molecular docking and dynamics demonstrate that OBP3 from M. viciae can bind to all four alarm pheromone components and the differential ligand binding between these very similar OBP3s from the two aphid species is determined mainly by the direct π-π interactions between ligands and the aromatic residues of OBP3s in the binding pocket.
|
Apr 2016
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[7197]
Open Access
Abstract: Stationary phase survival proteins (Sps) were found in Firmicutes as having analogous domain compositions, and in some cases genome context, as the resuscitation promoting factors of Actinobacteria, but with a different putative peptidoglycan cleaving domain.
|
Jul 2015
|
|
I03-Macromolecular Crystallography
|
Abstract: Mycobacterium tuberculosis, the most successful bacterial pathogen, causes tuberculosis, a disease that still causes more than 2 million deaths per year. Arylamine N-acetyltransferase is an enzyme that is conserved in most Mycobacterium spp. The nat gene belongs to an operon that is important for the intracellular survival of M. tuberculosis within macrophages. The nat operon in Mycobacterium smegmatis and other fast-growing mycobacterial species has a unique organization containing genes with uncharacterized function. Here, we describe the biochemical, biophysical and structural characterization of the MSMEG_0308 gene product (MS0308) of the M. smegmatis nat operon. While characterizing the function of MS0308, we validated the oxidoreductase property; however, we found that the enzyme was not utilizing dihydrofolate as its substrate, hence we first report that MS0308 is not a dihydrofolate reductase, as annotated in the genome. The structure of this oxidoreductase was solved at 2.0 Å in complex with the cofactor NADPH and has revealed the hydrophobic pocket where the endogenous substrate binds.
|
Oct 2011
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
|
Open Access
Abstract: Small heat shock proteins form large cytosolic assemblies from an α-crystallin domain (ACD) flanked by sequence extensions. Mutation of a conserved arginine in the ACD of several human small heat shock protein family members causes many common inherited diseases of the lens and neuromuscular system. The mutation R120G in αB-crystallin causes myopathy, cardiomyopathy and cataract. We have solved the X-ray structure of the excised ACD dimer of human αB R120G close to physiological pH and compared it with several recently determined wild-type vertebrate ACD dimer structures. Wild-type excised ACD dimers have a deep groove at the interface floored by a flat extended bottom sheet. Solid-state NMR studies of large assemblies of full-length αB-crystallin have shown that the groove is blocked in the ACD dimer by curvature of the bottom sheet. The crystal structure of R120G ACD dimer also reveals a closed groove, but here the bottom sheet is flat. Loss of Arg120 results in rearrangement of an extensive array of charged interactions across this interface. His83 and Asp80 on movable arches on either side of the interface close the groove by forming two new salt bridges. The residues involved in this extended set of ionic interactions are conserved in Hsp27, Hsp20, αA- and αB-crystallin sequences. They are not conserved in Hsp22, where mutation of the equivalent of Arg120 causes neuropathy. We speculate that the αB R120G mutation disturbs oligomer dynamics, causing the growth of large soluble oligomers that are toxic to cells by blocking essential processes.
|
Feb 2011
|
|
I04-Macromolecular Crystallography
|
Abstract: The emergence of total drug-resistant tuberculosis (TDRTB) has made the discovery of new therapies for tuberculosis urgent. The cytoplasmic enzymes of peptidoglycan biosynthesis have generated renewed interest as attractive targets for the development of new anti-mycobacterials. One of the cytoplasmic enzymes, uridine diphosphate (UDP)-MurNAc-tripeptide ligase (MurE), catalyses the addition of meso-diaminopimelic acid (m-DAP) into peptidoglycan in Mycobacterium tuberculosis coupled to the hydrolysis of ATP. Mutants of M. tuberculosis MurE were generated by replacing K157, E220, D392, R451 with alanine and N449 with aspartate, and truncating the first 24 amino acid residues at the N-terminus of the enzyme. Analysis of the specific activity of these proteins suggested that apart from the 24 Nterminal residues, the other mutated residues are essential for catalysis. Variations in K m values for one or more substrates were observed for all mutants, except the N-terminal truncation mutant, indicating that these residues are involved in binding substrates and form part of the active site structure. These mutant proteins were also tested for their specificity for a wide range of substrates. Interestingly, the mutations K157A, E220A and D392A showed hydrolysis of ATP uncoupled from catalysis. The ATP hydrolysis rate was enhanced by at least partial occupation of the uridine nucleotide dipeptide binding site. This study provides an insight into the residues essential for the catalytic activity and substrate binding of the ATP-dependent MurE ligase. Since ATP-dependent MurE ligase is a novel drug target, the understanding of its function may lead to development of novel inhibitors against resistant forms of M. tuberculosis.
|
Dec 2010
|
|