E01-JEM ARM 200CF
|
Diamond Proposal Number(s):
[32597, 28816]
Abstract: Niobium tungsten oxides are gaining attention as anodes for lithium-ion batteries due to their high volumetric energy storage densities obtained at high cycling rates. Two new niobium tungsten bronze structures, NbWO5.5 and β-Nb2WO8, were prepared with microwave-assisted solution-based methods at 800°C. These adopt a simple tetragonal tungsten bronze (TTB) and a √2 × √2 TTB superstructure, respectively. Nb3WO10.5 with a structure closely related to β-Nb2WO8 was formed at higher Nb:W ratios. Nb:W ≥ 4 compositions result in two-phase behavior forming Nb2O5 and Nb3WO10.5, while W-rich bronzes (Nb:W < 1) exhibited local domains of WO3 within the NbWO5.5 lattice. Diffraction and electron microscopy analysis revealed cation ordering in the bronzes at different length scales. The microwave synthesis method produced microporous spheres, with the high-Nb-content phases showing promising high-rate capabilities and long cycle lives, making them suitable for energy-storage applications. The microwave-assisted solution method holds potential for synthesizing complex oxide materials across diverse applications.
|
Jul 2024
|
|
|
Bolong
Zhang
,
Kieran D.
Richards
,
Beatrice E.
Jones
,
Abigail R.
Collins
,
Rosie
Sanders
,
Sarah R.
Needham
,
Pu
Qian
,
Amoghavarsha
Mahadevegowda
,
Caterina
Ducati
,
Stanley
Botchway
,
Rachel C.
Evans
Open Access
Abstract: Image contrast is often limited by background autofluorescence in steady-state bioimaging microscopy. Upconversion bioimaging can overcome this by shifting the emission lifetime and wavelength beyond the autofluorescence window. Here we demonstrate the first example of triplet-triplet annihilation upconversion (TTA-UC) based lifetime imaging microscopy. A new class of ultra-small nanoparticle (NP) probes based on TTA-UC chromophores encapsulated in an organic-inorganic host has been synthesized. The NPs exhibit bright UC emission (400-500 nm) in aerated aqueous media with a UC lifetime of ~1 μs, excellent colloidal stability and little cytotoxicity. Proof-of-concept demonstration of TTA-UC lifetime imaging using these NPs shows that the long-lived anti-Stokes emission is easily discriminable from typical autofluorescence. Moreover, fluctuations in the UC lifetime can be used to map local oxygen diffusion across the subcellular structure. Our TTA-UC NPs are highly promising stains for lifetime imaging microscopy, affording excellent image contrast and potential for oxygen mapping that is ripe for further exploitation.
|
Aug 2023
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[28349]
Open Access
Abstract: Nickel-rich layered oxide cathodes such as NMC811 (LixNi0.8Mn0.1Co0.1O2) currently have the highest practical capacities of cathodes used commercially, approaching 200 mAh/g. Lithium is removed from NMC811 via a solid-solution behavior when delithiated to xLi > 0.10, maintaining the same layered (O3 structure) throughout as observed via operando diffraction measurements. Although it is possible to further delithiate NMC811, it is kinetically challenging, and there are significant side reactions between the electrolyte and cathode surface. Here, small format, NMC811-graphite pouch cells were charged to high voltages at elevated temperatures and held for days to access high states of delithiation. Rietveld refinements on high-resolution diffraction data and indexing of selected area electron diffraction patterns, both acquired ex situ, show that NMC811 undergoes a partial and reversible transition from the O3 to the O1 phase under these conditions. The O1 phase fraction depends not only on the concentration of intercalated lithium but also on the hold temperature and hold time, indicating that the phase transition is kinetically controlled. 1H NMR spectroscopy shows that the proton concentration decreases with O1 phase fraction and is not, therefore, likely to be driving the O3–O1 phase transition.
|
Jun 2023
|
|
I07-Surface & interface diffraction
|
Yuqi
Sun
,
Lishuang
Ge
,
Linjie
Dai
,
Changsoon
Cho
,
Jordi
Ferrer Orri
,
Kangyu
Ji
,
Szymon J.
Zelewski
,
Yun
Liu
,
Alessandro J.
Mirabelli
,
Youcheng
Zhang
,
Jun-Yu
Huang
,
Yusong
Wang
,
Ke
Gong
,
May Ching
Lai
,
Lu
Zhang
,
Dan
Yang
,
Jiudong
Lin
,
Elizabeth M.
Tennyson
,
Caterina
Ducati
,
Samuel D.
Stranks
,
Lin-Song
Cui
,
Neil C.
Greenham
Diamond Proposal Number(s):
[30575]
Abstract: Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm−2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm−2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm−2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm−2, along with a high radiance of more than 3,200 W s−1 m−2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s−1 m−2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.
|
Mar 2023
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[14239]
Open Access
Abstract: Li- and Mn-rich layered oxides (Li1.2Ni0.2Mn0.6O2) are actively pursued as high energy and sustainable alternatives to the current Li-ion battery cathodes that contain Co. However, the severe decay in discharge voltage observed in these cathodes needs to be addressed before they can find commercial applications. A few mechanisms differing in origin have been proposed to explain the voltage fade, which may be caused by differences in material composition, morphology and electrochemical testing protocols. Here, these challenges are addressed by synthesising Li1.2Ni0.2Mn0.6O2 using three different hydrothermal and solid-state approaches and studying their degradation using the same cell design and cycling protocols. The voltage fade is found to be similar under the same electrochemical testing protocols, regardless of the synthesis method. X-ray absorption near edge, extended X-ray absorption fine structure spectroscopies, and energy loss spectroscopy in a scanning transmission electron microscope indicate only minor changes in the bulk Mn oxidation state but reveal a much more reduced particle surface upon extended cycling. No spinel phase is seen via the bulk structural characterisation methods of synchrotron X-ray diffraction, 7Li magic angle spinning solid state nuclear magnetic resonance and Raman spectroscopy. Thus, the voltage fade is believed to largely result from a heavily reduced particle surface. This hypothesis is further confirmed by galvanostatic intermittent titration technique analysis, which indicates that only very small shifts in equilibrium potential take place, in contrast to the overpotential which builds up after cycling. This suggests that a major source of the voltage decay is kinetic in origin, resulting from a heavily reduced particle surface with slow Li transport.
|
Sep 2022
|
|
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[25250, 20420]
Open Access
Abstract: The interaction of high-energy electrons and X-ray photons with beam-sensitive semiconductors such as halide perovskites is essential for the characterisation and understanding of these optoelectronic materials. Using nano-probe diffraction techniques, which can investigate physical properties on the nanoscale, we perform studies of the interaction of electron and X-ray radiation with state-of-the-art (FA0.79MA0.16Cs0.05)Pb(I0.83Br0.17)3 hybrid halide perovskite films (FA, formamidinium; MA, methylammonium). We track the changes in the local crystal structure as a function of fluence using scanning electron diffraction and synchrotron nano X-ray diffraction techniques. We identify perovskite grains from which additional reflections, corresponding to PbBr2, appear as a crystalline degradation phase after fluences of ∼200 e–Å–2. These changes are concomitant with the formation of small PbI2 crystallites at the adjacent high-angle grain boundaries, with the formation of pinholes, and with a phase transition from tetragonal to cubic. A similar degradation pathway is caused by photon irradiation in nano-X-ray diffraction, suggesting common underlying mechanisms. Our approach explores the radiation limits of these materials and provides a description of the degradation pathways on the nanoscale. Addressing high-angle grain boundaries will be critical for the further improvement of halide polycrystalline film stability, especially for applications vulnerable to high-energy radiation such as space photovoltaics.
|
Mar 2022
|
|
I09-Surface and Interface Structural Analysis
|
Zahra
Andaji-Garmaroudi
,
Mojtaba
Abdi-Jalebi
,
Felix U.
Kosasih
,
Tiarnan
Doherty
,
Stuart
Macpherson
,
Alan R.
Bowman
,
Gabriel J.
Man
,
Ute B.
Cappel
,
Hakan
Rensmo
,
Caterina
Ducati
,
Richard H.
Friend
,
Samuel D.
Stranks
Diamond Proposal Number(s):
[22668]
Abstract: Halide perovskites have attracted substantial interest for their potential as disruptive display and lighting technologies. However, perovskite light‐emitting diodes (PeLEDs) are still hindered by poor operational stability. A fundamental understanding of the degradation processes is lacking but will be key to mitigating these pathways. Here, a combination of in operando and ex situ measurements to monitor the performance degradation of (Cs0.06FA0.79MA0.15)Pb(I0.85Br0.15)3 PeLEDs over time is used. Through device, nanoscale cross‐sectional chemical mapping, and optical spectroscopy measurements, it is revealed that the degraded performance arises from an irreversible accumulation of bromide content at one interface, which leads to barriers to injection of charge carriers and thus increased nonradiative recombination. This ionic segregation is impeded by passivating the perovskite films with potassium halides, which immobilizes the excess halide species. The passivated PeLEDs show enhanced external quantum efficiency (EQE) from 0.5% to 4.5% and, importantly, show significantly enhanced stability, with minimal performance roll‐off even at high current densities (>200 mA cm−2). The decay half‐life for the devices under continuous operation at peak EQE increases from <1 to ≈15 h through passivation, and ≈200 h under pulsed operation. The results provide generalized insight into degradation pathways in PeLEDs and highlight routes to overcome these challenges.
|
Nov 2020
|
|
I11-High Resolution Powder Diffraction
|
Chao
Xu
,
Katharina
Märker
,
Juhan
Lee
,
Amoghavarsha
Mahadevegowda
,
Philip J.
Reeves
,
Sarah J.
Day
,
Matthias F.
Groh
,
Steffen P.
Emge
,
Caterina
Ducati
,
B. Layla
Mehdi
,
Chiu C.
Tang
,
Clare P.
Grey
Diamond Proposal Number(s):
[16733, 25186]
Abstract: Ni-rich layered cathode materials are among the most promising candidates for high-energy-density Li-ion batteries, yet their degradation mechanisms are still poorly understood. We report a structure-driven degradation mechanism for NMC811 (LiNi0.8Mn0.1Co0.1O2), in which a proportion of the material exhibits a lowered accessible state of charge at the end of charging after repetitive cycling and becomes fatigued. Operando synchrotron long-duration X-ray diffraction enabled by a laser-thinned coin cell shows the emergence and growth in the concentration of this fatigued phase with cycle number. This degradation is structure driven and is not solely due to kinetic limitations or intergranular cracking: no bulk phase transformations, no increase in Li/Ni antisite mixing and no notable changes in the local structure or Li-ion mobility of the bulk are seen in aged NMCs. Instead, we propose that this degradation stems from the high interfacial lattice strain between the reconstructed surface and the bulk layered structure that develops when the latter is at states of charge above a distinct threshold of approximately 75%. This mechanism is expected to be universal in Ni-rich layered cathodes. Our findings provide fundamental insights into strategies to help mitigate this degradation process.
|
Aug 2020
|
|
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
|
Tiarnan A. S.
Doherty
,
Andrew J.
Winchester
,
Stuart
Macpherson
,
Duncan N.
Johnstone
,
Vivek
Pareek
,
Elizabeth M.
Tennyson
,
Sofiia
Kosar
,
Felix U.
Kosasih
,
Miguel
Anaya
,
Mojtaba
Abdi-Jalebi
,
Zahra
Andaji-Garmaroudi
,
E. Laine
Wong
,
Julien
Madéo
,
Yu-Hsien
Chiang
,
Ji-Sang
Park
,
Young-Kwang
Jung
,
Christopher E.
Petoukhoff
,
Giorgio
Divitini
,
Michael K. l.
Man
,
Caterina
Ducati
,
Aron
Walsh
,
Paul A.
Midgley
,
Keshav M.
Dani
,
Samuel D.
Stranks
Diamond Proposal Number(s):
[19023, 19793]
Abstract: Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions and with local strain, both of which make devices less stable. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.
|
Apr 2020
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[17223]
Open Access
Abstract: Halide perovskites are emerging as valid alternatives to conventional photovoltaic active materials owing to their low cost and high device performances. This material family also shows exceptional tunability of properties by varying chemical components, crystal structure, and dimensionality, providing a unique set of building blocks for new structures. Here, highly stable self‐assembled lead–tin perovskite heterostructures formed between low‐bandgap 3D and higher‐bandgap 2D components are demonstrated. A combination of surface‐sensitive X‐ray diffraction, spatially resolved photoluminescence, and electron microscopy measurements is used to reveal that microstructural heterojunctions form between high‐bandgap 2D surface crystallites and lower‐bandgap 3D domains. Furthermore, in situ X‐ray diffraction measurements are used during film formation to show that an ammonium thiocyanate additive delays formation of the 3D component and thus provides a tunable lever to substantially increase the fraction of 2D surface crystallites. These novel heterostructures will find use in bottom cells for stable tandem photovoltaics with a surface 2D layer passivating the 3D material, or in energy‐transfer devices requiring controlled energy flow from localized surface crystallites to the bulk.
|
Nov 2019
|
|