I11-High Resolution Powder Diffraction
|
Zhengyan
Lun
,
Alice J.
Merryweather
,
Amoghavarsha
Mahadevegowda
,
Shrinidhi S.
Pandurangi
,
Chao
Xu
,
Simon
Fairclough
,
Vikram
Deshpande
,
Norman A.
Fleck
,
Caterina
Ducati
,
Christoph
Schnedermann
,
Akshay
Rao
,
Clare P.
Grey
Open Access
Abstract: Extensive worldwide efforts have been made to understand the degradation behavior of layered Ni-rich LiNixMnyCo(1−x−y)O2 (NMC) cathodes. The majority of studies carried out to date have focused on thermodynamic perspectives and are conducted ex situ; operando investigations on aged materials, especially those that can resolve dynamic information in a single-particle level remain sparse, preventing the development of long-term stable NMCs. Here, we directly visualize the real-time Li-ion transport kinetics of aged Ni-rich single-crystal NMC under operando conditions and at single-particle level using a recently developed optical microscopy technique. For both fresh and aged particles, we identify Li-ion concentration gradients developing during the early stages of delithiation – resulting in a Li-rich core and Li-poor surface – as observed previously and attributed to low Li-ion diffusivity at high Li-occupancies. Critically, in contrast to fresh particles, the Li-ion gradients in aged particles become markedly asymmetric, with the Li-rich core shifted away from the center of mass of the particle. Using ex situ transmission electron microscopy, we show that cell aging produces an uneven build-up of a surface rocksalt layer. Supported by finite-element modelling, we attribute the asymmetric delithiation behavior of the aged particles to this uneven rocksalt layer, which impedes the Li-ion flux heterogeneously at the particle surface. Our results demonstrate a new mechanism that contributes to the capacity and rate degradation of Ni-rich cathodes, highlighting the importance of controlling the build-up of detrimental interfacial layers in cathodes and providing a rational for improving the long-term stability and rate capabilities of Ni-rich NMC cathodes.
|
Mar 2025
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[31918]
Open Access
Abstract: The discovery of ferroelectric phases in HfO2-based films has reignited interest in ferroelectrics and their application in resistive switching (RS) devices. This study investigates the pivotal role of electrodes in facilitating the Schottky-to-Ohmic transition (SOT) observed in devices consisting of ultrathin epitaxial ferroelectric Hf0.93Y0.07O2 (YHO) films deposited on La0.67Sr0.33MnO3-buffered Nb-doped SrTiO3 (NbSTO|LSMO) with Ti|Au top electrodes. These findings indicate combined filamentary RS and ferroelectric switching occurs in devices with designed electrodes, having an ON/OFF ratio of over 100 during about 105 cycles. Transport measurements of modified device stacks show no change in SOT when the ferroelectric YHO layer is replaced with an equivalent hafnia-based layer, Hf0.5Zr0.5O2 (HZO). However, incomplete SOT is observed for variations in the top electrode thickness or material, as well as LSMO electrode thickness. This underscores the importance of employing oxygen-reactive electrodes and a bottom electrode with reduced conductivity to stabilize SOT. These findings provide valuable insights for enhancing the performance of ferroelectric RS devices through integration with filamentary RS mechanism.
|
Jan 2025
|
|
E01-JEM ARM 200CF
|
Diamond Proposal Number(s):
[32597, 28816]
Abstract: Niobium tungsten oxides are gaining attention as anodes for lithium-ion batteries due to their high volumetric energy storage densities obtained at high cycling rates. Two new niobium tungsten bronze structures, NbWO5.5 and β-Nb2WO8, were prepared with microwave-assisted solution-based methods at 800°C. These adopt a simple tetragonal tungsten bronze (TTB) and a √2 × √2 TTB superstructure, respectively. Nb3WO10.5 with a structure closely related to β-Nb2WO8 was formed at higher Nb:W ratios. Nb:W ≥ 4 compositions result in two-phase behavior forming Nb2O5 and Nb3WO10.5, while W-rich bronzes (Nb:W < 1) exhibited local domains of WO3 within the NbWO5.5 lattice. Diffraction and electron microscopy analysis revealed cation ordering in the bronzes at different length scales. The microwave synthesis method produced microporous spheres, with the high-Nb-content phases showing promising high-rate capabilities and long cycle lives, making them suitable for energy-storage applications. The microwave-assisted solution method holds potential for synthesizing complex oxide materials across diverse applications.
|
Jul 2024
|
|
|
Bolong
Zhang
,
Kieran D.
Richards
,
Beatrice E.
Jones
,
Abigail R.
Collins
,
Rosie
Sanders
,
Sarah R.
Needham
,
Pu
Qian
,
Amoghavarsha
Mahadevegowda
,
Caterina
Ducati
,
Stanley
Botchway
,
Rachel C.
Evans
Open Access
Abstract: Image contrast is often limited by background autofluorescence in steady-state bioimaging microscopy. Upconversion bioimaging can overcome this by shifting the emission lifetime and wavelength beyond the autofluorescence window. Here we demonstrate the first example of triplet-triplet annihilation upconversion (TTA-UC) based lifetime imaging microscopy. A new class of ultra-small nanoparticle (NP) probes based on TTA-UC chromophores encapsulated in an organic-inorganic host has been synthesized. The NPs exhibit bright UC emission (400-500 nm) in aerated aqueous media with a UC lifetime of ~1 μs, excellent colloidal stability and little cytotoxicity. Proof-of-concept demonstration of TTA-UC lifetime imaging using these NPs shows that the long-lived anti-Stokes emission is easily discriminable from typical autofluorescence. Moreover, fluctuations in the UC lifetime can be used to map local oxygen diffusion across the subcellular structure. Our TTA-UC NPs are highly promising stains for lifetime imaging microscopy, affording excellent image contrast and potential for oxygen mapping that is ripe for further exploitation.
|
Aug 2023
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[28349]
Open Access
Abstract: Nickel-rich layered oxide cathodes such as NMC811 (LixNi0.8Mn0.1Co0.1O2) currently have the highest practical capacities of cathodes used commercially, approaching 200 mAh/g. Lithium is removed from NMC811 via a solid-solution behavior when delithiated to xLi > 0.10, maintaining the same layered (O3 structure) throughout as observed via operando diffraction measurements. Although it is possible to further delithiate NMC811, it is kinetically challenging, and there are significant side reactions between the electrolyte and cathode surface. Here, small format, NMC811-graphite pouch cells were charged to high voltages at elevated temperatures and held for days to access high states of delithiation. Rietveld refinements on high-resolution diffraction data and indexing of selected area electron diffraction patterns, both acquired ex situ, show that NMC811 undergoes a partial and reversible transition from the O3 to the O1 phase under these conditions. The O1 phase fraction depends not only on the concentration of intercalated lithium but also on the hold temperature and hold time, indicating that the phase transition is kinetically controlled. 1H NMR spectroscopy shows that the proton concentration decreases with O1 phase fraction and is not, therefore, likely to be driving the O3–O1 phase transition.
|
Jun 2023
|
|
I07-Surface & interface diffraction
|
Yuqi
Sun
,
Lishuang
Ge
,
Linjie
Dai
,
Changsoon
Cho
,
Jordi
Ferrer Orri
,
Kangyu
Ji
,
Szymon J.
Zelewski
,
Yun
Liu
,
Alessandro J.
Mirabelli
,
Youcheng
Zhang
,
Jun-Yu
Huang
,
Yusong
Wang
,
Ke
Gong
,
May Ching
Lai
,
Lu
Zhang
,
Dan
Yang
,
Jiudong
Lin
,
Elizabeth M.
Tennyson
,
Caterina
Ducati
,
Samuel D.
Stranks
,
Lin-Song
Cui
,
Neil C.
Greenham
Diamond Proposal Number(s):
[30575]
Abstract: Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm−2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm−2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm−2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm−2, along with a high radiance of more than 3,200 W s−1 m−2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s−1 m−2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.
|
Mar 2023
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[14239]
Open Access
Abstract: Li- and Mn-rich layered oxides (Li1.2Ni0.2Mn0.6O2) are actively pursued as high energy and sustainable alternatives to the current Li-ion battery cathodes that contain Co. However, the severe decay in discharge voltage observed in these cathodes needs to be addressed before they can find commercial applications. A few mechanisms differing in origin have been proposed to explain the voltage fade, which may be caused by differences in material composition, morphology and electrochemical testing protocols. Here, these challenges are addressed by synthesising Li1.2Ni0.2Mn0.6O2 using three different hydrothermal and solid-state approaches and studying their degradation using the same cell design and cycling protocols. The voltage fade is found to be similar under the same electrochemical testing protocols, regardless of the synthesis method. X-ray absorption near edge, extended X-ray absorption fine structure spectroscopies, and energy loss spectroscopy in a scanning transmission electron microscope indicate only minor changes in the bulk Mn oxidation state but reveal a much more reduced particle surface upon extended cycling. No spinel phase is seen via the bulk structural characterisation methods of synchrotron X-ray diffraction, 7Li magic angle spinning solid state nuclear magnetic resonance and Raman spectroscopy. Thus, the voltage fade is believed to largely result from a heavily reduced particle surface. This hypothesis is further confirmed by galvanostatic intermittent titration technique analysis, which indicates that only very small shifts in equilibrium potential take place, in contrast to the overpotential which builds up after cycling. This suggests that a major source of the voltage decay is kinetic in origin, resulting from a heavily reduced particle surface with slow Li transport.
|
Sep 2022
|
|
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[25250, 20420]
Open Access
Abstract: The interaction of high-energy electrons and X-ray photons with beam-sensitive semiconductors such as halide perovskites is essential for the characterisation and understanding of these optoelectronic materials. Using nano-probe diffraction techniques, which can investigate physical properties on the nanoscale, we perform studies of the interaction of electron and X-ray radiation with state-of-the-art (FA0.79MA0.16Cs0.05)Pb(I0.83Br0.17)3 hybrid halide perovskite films (FA, formamidinium; MA, methylammonium). We track the changes in the local crystal structure as a function of fluence using scanning electron diffraction and synchrotron nano X-ray diffraction techniques. We identify perovskite grains from which additional reflections, corresponding to PbBr2, appear as a crystalline degradation phase after fluences of ∼200 e–Å–2. These changes are concomitant with the formation of small PbI2 crystallites at the adjacent high-angle grain boundaries, with the formation of pinholes, and with a phase transition from tetragonal to cubic. A similar degradation pathway is caused by photon irradiation in nano-X-ray diffraction, suggesting common underlying mechanisms. Our approach explores the radiation limits of these materials and provides a description of the degradation pathways on the nanoscale. Addressing high-angle grain boundaries will be critical for the further improvement of halide polycrystalline film stability, especially for applications vulnerable to high-energy radiation such as space photovoltaics.
|
Mar 2022
|
|
I09-Surface and Interface Structural Analysis
|
Zahra
Andaji-Garmaroudi
,
Mojtaba
Abdi-Jalebi
,
Felix U.
Kosasih
,
Tiarnan
Doherty
,
Stuart
Macpherson
,
Alan R.
Bowman
,
Gabriel J.
Man
,
Ute B.
Cappel
,
Hakan
Rensmo
,
Caterina
Ducati
,
Richard H.
Friend
,
Samuel D.
Stranks
Diamond Proposal Number(s):
[22668]
Abstract: Halide perovskites have attracted substantial interest for their potential as disruptive display and lighting technologies. However, perovskite light‐emitting diodes (PeLEDs) are still hindered by poor operational stability. A fundamental understanding of the degradation processes is lacking but will be key to mitigating these pathways. Here, a combination of in operando and ex situ measurements to monitor the performance degradation of (Cs0.06FA0.79MA0.15)Pb(I0.85Br0.15)3 PeLEDs over time is used. Through device, nanoscale cross‐sectional chemical mapping, and optical spectroscopy measurements, it is revealed that the degraded performance arises from an irreversible accumulation of bromide content at one interface, which leads to barriers to injection of charge carriers and thus increased nonradiative recombination. This ionic segregation is impeded by passivating the perovskite films with potassium halides, which immobilizes the excess halide species. The passivated PeLEDs show enhanced external quantum efficiency (EQE) from 0.5% to 4.5% and, importantly, show significantly enhanced stability, with minimal performance roll‐off even at high current densities (>200 mA cm−2). The decay half‐life for the devices under continuous operation at peak EQE increases from <1 to ≈15 h through passivation, and ≈200 h under pulsed operation. The results provide generalized insight into degradation pathways in PeLEDs and highlight routes to overcome these challenges.
|
Nov 2020
|
|
I11-High Resolution Powder Diffraction
|
Chao
Xu
,
Katharina
Märker
,
Juhan
Lee
,
Amoghavarsha
Mahadevegowda
,
Philip J.
Reeves
,
Sarah J.
Day
,
Matthias F.
Groh
,
Steffen P.
Emge
,
Caterina
Ducati
,
B. Layla
Mehdi
,
Chiu C.
Tang
,
Clare P.
Grey
Diamond Proposal Number(s):
[16733, 25186]
Abstract: Ni-rich layered cathode materials are among the most promising candidates for high-energy-density Li-ion batteries, yet their degradation mechanisms are still poorly understood. We report a structure-driven degradation mechanism for NMC811 (LiNi0.8Mn0.1Co0.1O2), in which a proportion of the material exhibits a lowered accessible state of charge at the end of charging after repetitive cycling and becomes fatigued. Operando synchrotron long-duration X-ray diffraction enabled by a laser-thinned coin cell shows the emergence and growth in the concentration of this fatigued phase with cycle number. This degradation is structure driven and is not solely due to kinetic limitations or intergranular cracking: no bulk phase transformations, no increase in Li/Ni antisite mixing and no notable changes in the local structure or Li-ion mobility of the bulk are seen in aged NMCs. Instead, we propose that this degradation stems from the high interfacial lattice strain between the reconstructed surface and the bulk layered structure that develops when the latter is at states of charge above a distinct threshold of approximately 75%. This mechanism is expected to be universal in Ni-rich layered cathodes. Our findings provide fundamental insights into strategies to help mitigate this degradation process.
|
Aug 2020
|
|