I09-Surface and Interface Structural Analysis
|
Le
Wang
,
Zhenzhong
Yang
,
Widitha S.
Samarakoon
,
Yadong
Zhou
,
Mark E.
Bowden
,
Hua
Zhou
,
Jinhui
Tao
,
Zihua
Zhu
,
Nabajit
Lahiri
,
Timothy C.
Droubay
,
Zachary W.
Lebens-Higgins
,
Xinmao
Yin
,
Chi Sin
Tang
,
Zhenxing
Feng
,
Louis F. J.
Piper
,
Andrew T. S.
Wee
,
Scott A.
Chambers
,
Yingge
Du
Diamond Proposal Number(s):
[19162]
Abstract: Epitaxial growth is a powerful tool for synthesizing heterostructures and integrating multiple functionalities. However, interfacial mixing can readily occur and significantly modify the properties of layered structures, particularly for those containing energy storage materials with smaller cations. Here, we show a two-step sequence involving the growth of an epitaxial LiCoO2 cathode layer followed by the deposition of a binary transition metal oxide. Orientation-controlled epitaxial synthesis of the model solid-state-electrolyte Li2WO4 and anode material Li4Ti5O12 occurs as WO3 and TiO2 nucleate and react with Li ions from the underlying cathode. We demonstrate that this lithiation-assisted epitaxy approach can be used for energy materials discovery and exploring different combinations of epitaxial interfaces that can serve as well-defined model systems for mechanistic studies of energy storage and conversion processes.
|
Jun 2022
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[25355, 13812]
Abstract: Recent progress in the growth and characterization of thin-film
VO
2
has shown its electronic properties can be significantly modulated by epitaxial matching. To throw new light on the concept of “Mott engineering,” we develop a symmetry-consistent approach to treat structural distortions and electronic correlations in epitaxial
VO
2
films under strain, and compare our design with direct experimental probes. We find strong evidence for the emergence of correlation-driven charge order deep in the metallic phase, and our results indicate that exotic phases of
VO
2
can be controlled with epitaxial stabilization.
|
Jan 2022
|
|
I09-Surface and Interface Structural Analysis
|
Nicholas H.
Bashian
,
Mateusz
Zuba
,
Ahamed
Irshad
,
Shona M.
Becwar
,
Julija
Vinckeviciute
,
Warda
Rahim
,
Kent J.
Griffith
,
Eric T.
Mcclure
,
Joseph K.
Papp
,
Bryan D.
Mccloskey
,
David O.
Scanlon
,
Bradley F.
Chmelka
,
Anton
Van Der Ven
,
Sri R.
Narayan
,
Louis F. J.
Piper
,
Brent
Melot
Diamond Proposal Number(s):
[22250]
Abstract: We report on the electrochemical fluorination of the A-site vacant perovskite ReO3 using high-temperature solid-state cells as well as room-temperature liquid electrolytes. Using galvanostatic oxidation and electrochemical impedance spectroscopy, we find that ReO3 can be oxidized by approximately 0.5 equiv of electrons when in contact with fluoride-rich electrolytes. Results from our density functional theory calculations clearly rule out the most intuitive mechanism for charge compensation, whereby F-ions would simply insert onto the A-site of the perovskite structure. Operando X-ray diffraction, neutron total scattering measurements, X-ray spectroscopy, and solid-state 19F NMR with magic-angle spinning were, therefore, used to explore the mechanism by which fluoride ions react with the ReO3 electrode during oxidation. Taken together, our results indicate that a complex structural transformation occurs following fluorination to stabilize the resulting material. While we find that this process of fluorinating ReO3 appears to be only partially reversible, this work demonstrates a practical electrolyte and cell design that can be used to evaluate the mobility of small anions like fluoride that is robust at room temperature and opens new opportunities for exploring the electrochemical fluorination of many new materials.
|
Jul 2021
|
|
|
Open Access
Abstract: Ternary lanthanide indium oxides LnInO3 (Ln = La, Pr, Nd, Sm) were synthesized by high-temperature solid-state reaction and characterized by X-ray powder diffraction. Rietveld refinement of the powder patterns showed the LnInO3 materials to be orthorhombic perovskites belonging to the space group Pnma, based on almost-regular InO6 octahedra and highly distorted LnO12 polyhedra. Experimental structural data were compared with results from density functional theory (DFT) calculations employing a hybrid Hamiltonian. Valence region X-ray photoelectron and K-shell X-ray emission and absorption spectra of the LnInO3 compounds were simulated with the aid of the DFT calculations. Photoionization of lanthanide 4f orbitals gives rise to a complex final-state multiplet structure in the valence region for the 4fn compounds PrInO3, NdInO3, and SmInO3, and the overall photoemission spectral profiles were shown to be a superposition of final-state 4fn–1 terms onto the cross-section weighted partial densities of states from the other orbitals. The occupied 4f states are stabilized in moving across the series Pr–Nd–Sm. Band gaps were measured using diffuse reflectance spectroscopy. These results demonstrated that the band gap of LaInO3 is 4.32 eV, in agreement with DFT calculations. This is significantly larger than a band gap of 2.2 eV first proposed in 1967 and based on the idea that In 4d states lie above the top of the O 2p valence band. However, both DFT and X-ray spectroscopy show that In 4d is a shallow core level located well below the bottom of the valence band. Band gaps greater than 4 eV were observed for NdInO3 and SmInO3, but a lower gap of 3.6 eV for PrInO3 was shown to arise from the occupied Pr 4f states lying above the main O 2p valence band.
|
Mar 2021
|
|
I09-Surface and Interface Structural Analysis
|
Zachary W.
Lebens-Higgins
,
Hyeseung
Chung
,
Israel
Temprano
,
Mateusz
Zuba
,
Jinpeng
Wu
,
Jatinkumar
Rana
,
Carlos
Mejia
,
Michael A.
Jones
,
Le
Wang
,
Clare P.
Grey
,
Yingge
Du
,
Wanli
Yang
,
Ying Shirley
Meng
,
Louis F. J.
Piper
Diamond Proposal Number(s):
[22250, 22148]
Abstract: Interest in alkali‐rich oxide cathodes has grown in an effort to identify systems that provide high energy densities through reversible oxygen redox. However, some of the most promising compositions such as those based solely on earth abundant elements, e. g., iron and manganese, suffer from poor capacity retention and large hysteresis. Here, we use the disordered rocksalt cathode, Li1.3Fe0.4Nb0.3O2, as a model system to identify the underlying origin for the poor performance of Li‐rich iron‐based cathodes. Using elementally specific spectroscopic probes, we find the first charge is primarily accounted for by iron oxidation to 4+ below 4.25 V and O2 gas release beyond 4.25 V with no evidence of bulk oxygen redox. Although the Li1.3Fe0.4Nb0.3O2 is not a viable oxygen redox cathode, the iron 3+/4+ redox couple can be used reversibly during cycling.
|
Jan 2021
|
|
I09-Surface and Interface Structural Analysis
|
Jack E. N.
Swallow
,
Christian
Vorwerk
,
Piero
Mazzolini
,
Patrick
Vogt
,
Oliver
Bierwagen
,
Alexander
Karg
,
Martin
Eickhoff
,
Jörg
Schörmann
,
Markus R.
Wagner
,
Joseph William
Roberts
,
Paul R.
Chalker
,
Matthew J.
Smiles
,
Philip
Murgatroyd
,
Sara
Mohamed
,
Zachary W.
Lebens-Higgins
,
Louis F. J.
Piper
,
Leanne A. H.
Jones
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Joel B.
Varley
,
Juergen
Furthmüller
,
Claudia
Draxl
,
Tim D.
Veal
,
Anna
Regoutz
Diamond Proposal Number(s):
[21430, 24670]
Abstract: The search for new wide band gap materials is intensifying to satisfy the need for more advanced and energy effcient power electronic devices. Ga2O3 has emerged as an alternative to SiC and GaN, sparking a renewed interest in its fundamental properties beyond the main β-phase. Here, three polymorphs of Ga2O3, α, β, and ε, are investigated using X-ray diffraction, X-ray photoelectron and absorption spectroscopy, and ab initio theoretical approaches to gain insights into their structure - electronic structure relationships. Valence and conduction electronic structure as well as semi-core and core states are probed, providing a complete picture of the influence of local coordination environments on the electronic structure. State-of-the-art electronic structure theory, including all-electron density functional theory and many-body perturbation theory, provide detailed understanding of the spectroscopic results. The calculated spectra provide very accurate descriptions of all experimental spectra and additionally illuminate the origin of observed spectral features. This work provides a strong basis for the exploration of the Ga2O3 polymorphs as materials at the heart of future electronic device generations.
|
Sep 2020
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[22148]
Abstract: Solar fuel generation mediated by semiconductor heterostructures represents a promising strategy for sustainable energy conversion and storage. The design of semiconductor heterostructures for photocatalytic energy conversion requires the separation of photogenerated charge carriers in real space and their delivery to active catalytic sites at the appropriate overpotentials to initiate redox reactions. Operation of the desired sequence of light harvesting, charge separation, and charge transport events within heterostructures is governed by the thermodynamic energy offsets of the two components and their photoexcited charge-transfer reactivity, which determine the extent to which desirable processes can outcompete unproductive recombination channels. Here, we map energetic offsets and track the dynamics of electron transfer in MoS2/CdS architectures, prepared by interfacing two-dimensional MoS2 nanosheets with CdS quantum dots (QDs), and correlate the observed charge separation to photocatalytic activity in the hydrogen evolution reaction. The energetic offsets between MoS2 and CdS have been determined using hard and soft X-ray photoemission spectroscopy (XPS) in conjunction with density functional theory. A staggered type-II interface is observed, which facilitates electron and hole separation across the interface. Transient absorption spectroscopy measurements demonstrate ultrafast electron injection occurring within sub-5 ps from CdS QDs to MoS2, allowing for creation of a long-lived charge-separated state. The increase of electron concentration in MoS2 is evidenced with the aid of spectroelectrochemical measurements and by identifying the distinctive signatures of electron—phonon scattering in picosecond-resolution transient absorption spectra. Ultrafast charge separation across the type-II interface of MoS2/CdS heterostructures enables a high Faradaic efficiency of ca. 99.4 ± 1.2% to be achieved in the hydrogen evolution reaction (HER) and provides a 40-fold increase in the photocatalytic activity of dispersed photocatalysts for H2 generation. The accurate mapping of thermodynamic driving forces and dynamics of charge transfer in these heterostructures suggests a means of engineering ultrafast electron transfer and effective charge separation in order to design viable photocatalytic architectures.
|
Aug 2020
|
|
I09-Surface and Interface Structural Analysis
|
Galo J.
Paez
,
Christopher N.
Singh
,
Matthew J.
Wahila
,
Keith E.
Tirpak
,
Nicholas F.
Quackenbush
,
Shawn
Sallis
,
Hanjong
Paik
,
Yufeng
Liang
,
Darrell G.
Schlom
,
Tien-Lin
Lee
,
Christoph
Schlueter
,
Wei-Cheng
Lee
,
Louis F. J.
Piper
Diamond Proposal Number(s):
[13812, 25355]
Abstract: Recent reports have identified new metaphases of
VO
2
with strain and/or doping, suggesting the structural phase transition and the metal-to-insulator transition might be decoupled. Using epitaxially strained
VO
2
/
Ti
O
2
(001) thin films, which display a bulklike abrupt metal-to-insulator transition and rutile to monoclinic transition structural phase transition, we employ x-ray standing waves combined with hard x-ray photoelectron spectroscopy to simultaneously measure the structural and electronic transitions. This x-ray standing waves study elegantly demonstrates the structural and electronic transitions occur concurrently within experimental limits (±1K).
|
May 2020
|
|
|
Abstract: The importance of metal migration during multi-electron redox activity has been characterized, revealing a competing demand to satisfy bonding requirements and local strains in structures upon alkali intercalation. The local structural evolution required to accommodate intercalation in Y2(MoO4)3 and Al2(MoO4)3 has been contrasted by operando characterization methods, including X-ray absorption spectroscopy and diffraction, along with nuclear magnetic resonance measurements. Computational modeling further rationalized behavioral differences. The local structure of Y2(MoO4)3 was maintained upon lithiation while the structure of Al2(MoO4)3 underwent substantial local atomic rearrangements as the stronger ionic character of the bonds in Al2(MoO4)3 allowed Al to mix off its starting octahedral position to accommodate strain during cycling. However, this mixing was prevented in the more covalent Y2(MoO4)3 which accommodated strain through rotational motion of polyhedral subunits. Knowing that an increased ionic character can facilitate the diffusion of redox-inactive metals when cycling multi-electron electrodes offers a powerful design principle when identifying next-generation intercalation hosts.
|
Apr 2020
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[22148]
Open Access
Abstract: The disproportionation of H2O into solar fuels H2 and O2, or water splitting, is a promising strategy for clean energy harvesting and storage but requires the concerted action of absorption of photons, separation of excitons, charge diffusion to catalytic sites and catalysis of redox processes. It is increasingly evident that the rational design of photocatalysts for efficient water splitting must employ hybrid systems, where the different components perform light harvesting, charge separation and catalysis in tandem. In this Topical Review, we report on the recent development of a new class of hybrid photocatalysts that employs MxV2O5 (M= p-block cation) nanowires in order to engineer efficient charge transfer from the photoactive chalcogenide quantum dots (QDs) to the water-splitting and hydrogen evolving catalysts. Herein, we summarize the oxygen-mediated lone pair mechanism used to modulate the energy level and orbital character of mid-gap states in the MxV2O5 nanowires. The electronic structure of MxV2O5 is discussed in terms of density functional theory and hard x-ray photoelectron spectroscopy (HAXPES) measurements. The principles of HAXPES are explained within the context of its unique sensitivity to metal 5(6)s orbitals and ability to non-destructively study buried interface alignments of quantum dot decorated nanowires i.e., MxV2O5 /CdX (X= S, Se, Te). We illustrate with examples how the MxV2O5 /CdX band alignments can be rationally engineered for ultra-fast charge-transfer of photogenerated holes from the quantum dot to the nanowires; thereby suppressing anodic photo-corrosion in the CdX QDs and enabling efficacious hydrogen evolution.
|
Mar 2020
|
|