B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Zhaodong
Zhu
,
Mengtian
Fan
,
Meng
He
,
Bing
An
,
Yinlin
Chen
,
Shaojun
Xu
,
Tianze
Zhou
,
Alena M.
Sheveleva
,
Meredydd
Kippax-Jones
,
Lutong
Shan
,
Yongqiang
Chen
,
Hamish
Cavaye
,
Jeff
Armstrong
,
Svemir
Rudic
,
Stewart F.
Parker
,
William
Thornley
,
Evan
Tillotson
,
Matthew
Lindley
,
Shenglong
Tian
,
Daniel
Lee
,
Shiyu
Fu
,
Mark D.
Frogley
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Sarah J.
Haigh
,
Sihai
Yang
Abstract: The methanol-to-olefins (MTO) process has the potential to bridge future gaps in the supply of sustainable lower olefins. Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions. Here, we report a novel heteroatomic silicoaluminophosphate (SAPO) zeolite, SAPO-34-Ta, which incorporates active tantalum(V) sites within the framework to afford an optimal distribution of acidity. SAPO-34-Ta exhibits a remarkable total selectivity of 85.8% for propylene and ethylene with a high selectivity of 54.9% for propylene on full conversion of methanol at 400 oC. In situ and operando synchrotron powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy and inelastic neutron scattering, coupled with theoretical calculations, reveal trimethyloxonium as the key reaction intermediate, promoting the formation of first carbon-carbon bonds in olefins. The tacit cooperation between tantalum(V) and Brønsted acid sites within SAPO-34 provides an efficient platform for selective production of lower olefins from methanol.
|
Jan 2025
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I15-1-X-ray Pair Distribution Function (XPDF)
|
Wanpeng
Lu
,
Yinlin
Chen
,
Zi
Wang
,
Jin
Chen
,
Yujie
Ma
,
Weiyao
Li
,
Jiangnan
Li
,
Meng
He
,
Mengtian
Fan
,
Alena M.
Sheveleva
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Mark D.
Frogley
,
Philip A.
Chater
,
Catherine
Dejoie
,
Martin
Schroder
,
Sihai
Yang
,
Lixia
Guo
Open Access
Abstract: The development of materials for ammonia (NH3) storage is an important and challenging task. Here, we report the high NH3 uptake in a series of copper-carboxylate materials, namely MFM-100, MFM-101, MFM-102, MFM-126, MFM-127, MFM-190(F), MFM-170, and Cu-MOP-1a. At 273 K and 1 bar, MFM-101 shows an exceptional uptake of 21.9 mmol g−1. X-ray pair distribution function analysis reveals an unusual crystalline-amorphous-crystalline phase transition for the isoreticular MFM-100, MFM-101 and MFM-102 upon adsorption and desorption of NH3 followed by regeneration in water. In situ X-ray diffraction, synchrotron infrared micro-spectroscopy, and electron paramagnetic resonance spectroscopy are employed to elucidate the presence of strong Cu(II)⋯NH3 interactions and changes in coordination at the [Cu2(O2CR)4] (R = di-, tri-, and tetra-phenyl ligands) paddlewheel.
|
Sep 2024
|
|
I19-Small Molecule Single Crystal Diffraction
|
Jiangnan
Li
,
Xinran
Zhang
,
Mengtian
Fan
,
Yinlin
Chen
,
Yujie
Ma
,
Gemma
Smith
,
Inigo
Vitórica-Yrezábal
,
Daniel
Lee
,
Shaojun
Xu
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[34413]
Open Access
Abstract: Optimization of active sites and stability under irradiation are important targets for sorbent materials that might be used for iodine (I2) storage. Herein, we report the direct observation of I2 binding in a series of Cu(II)-based isostructural metal–organic frameworks, MFM-170, MFM-172, MFM-174, NJU-Bai20, and NJU-Bai21, incorporating various functional groups (–H, −CH3, – NH2, –C≡C–, and −CONH–, respectively). MFM-170 shows a reversible uptake of 3.37 g g–1 and a high packing density of 4.41 g cm–3 for physiosorbed I2. The incorporation of −NH2 and –C≡C– moieties in MFM-174 and NJU-Bai20, respectively, enhances the binding of I2, affording uptakes of up to 3.91 g g–1. In addition, an exceptional I2 packing density of 4.83 g cm–3 is achieved in MFM-174, comparable to that of solid iodine (4.93 g cm–3). In situ crystallographic studies show the formation of a range of supramolecular and chemical interactions [I···N, I···H2N] and [I···C≡C, I–C═C–I] between −NH2, –C≡C– sites, respectively, and adsorbed I2 molecules. These observations have been confirmed via a combination of solid-state nuclear magnetic resonance, X-ray photoelectron, and Raman spectroscopies. Importantly, γ-irradiation confirmed the ultraresistance of MFM-170, MFM-174, and NJU-Bai20 suggesting their potential as efficient sorbents for cleanup of radioactive waste.
|
May 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Lixia
Guo
,
Joseph
Hurd
,
Meng
He
,
Wanpeng
Lu
,
Jiangnan
Li
,
Danielle
Crawshaw
,
Mengtian
Fan
,
Sergey A.
Sapchenko
,
Yinlin
Chen
,
Xiangdi
Zeng
,
Meredydd
Kippax-Jones
,
Wenyuan
Huang
,
Zhaodong
Zhu
,
Pascal
Manuel
,
Mark D.
Frogley
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: The development of stable sorbent materials to deliver reversible adsorption of ammonia (NH3) is a challenging task. Here, we report the efficient capture and storage of NH3 in a series of robust microporous aluminium-based metal-organic framework materials, namely MIL-160, CAU-10-H, Al-fum, and MIL-53(Al). In particular, MIL-160 shows high uptakes of NH3 of 4.8 and 12.8 mmol g−1 at both low and high pressure (0.001 and 1.0 bar, respectively) at 298 K. The combination of in situ neutron powder diffraction, synchrotron infrared micro-spectroscopy and solid-state nuclear magnetic resonance spectroscopy reveals the preferred adsorption domains of NH3 molecules in MIL-160, with H/D site-exchange between the host and guest and an unusual distortion of the local structure of [AlO6] moieties being observed. Dynamic breakthrough experiments confirm the excellent ability of MIL-160 to capture of NH3 with a dynamic uptake of 4.2 mmol g−1 at 1000 ppm. The combination of high porosity, pore aperture size and multiple binding sites promotes the significant binding affinity and capacity for NH3, which makes it a promising candidate for practical applications.
|
Mar 2023
|
|
I20-EDE-Energy Dispersive EXAFS (EDE)
|
Mengtian
Fan
,
Shaojun
Xu
,
Bing
An
,
Alena M.
Sheveleva
,
Alexander
Betts
,
Joseph
Hurd
,
Zhaodong
Zhu
,
Meng
He
,
Dinu
Iuga
,
Longfei
Lin
,
Xinchen
Kang
,
Christopher M. A.
Parlett
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Luke L.
Keenan
,
Daniel
Lee
,
Martin P.
Attfield
,
Sihai
Yang
Diamond Proposal Number(s):
[28575]
Open Access
Abstract: The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91%. The incorporation of Al(III) and Nb(V) sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed Nb(V) sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.
|
Oct 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Jiangnan
Li
,
Gemma L.
Smith
,
Yinlin
Chen
,
Yujie
Ma
,
Meredydd
Kippax-Jones
,
Mengtian
Fan
,
Wanpeng
Lu
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sarah
Day
,
Stephen P.
Thompson
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuetos
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[28497, 29649]
Open Access
Abstract: We report reversible high capacity adsorption of SO2 in robust Zr-based metal-organic frameworks (MOFs). Zr-bptc (H4bptc = biphenyl-3,3’,5,5’-tetracarboxylic acid) shows a high SO2 uptake of 6.2 mmol g-1 at 0.1 bar and 298 K, reflecting excellent capture capability and removal of SO2 at low concentration (2500 ppm). Dynamic breakthrough experiments confirm that the introduction of amine, atomically-dispersed Cu(II) or heteroatomic sulphur sites into the pores enhance the capture of SO2 at low concentrations. The captured SO2 can be converted quantitatively to a pharmaceutical intermediate, aryl N-aminosulfonamide, thus converting waste to chemical values. In situ X-ray diffraction, infrared micro-spectroscopic and inelastic neutron scattering enable the visualisation of the binding domains of adsorbed SO2 molecules and host-guest binding dynamics in these materials at the atomic level. The refinement of pore environment plays a critical role in designing efficient sorbent materials.
|
Jun 2022
|
|
B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
|
Yujie
Ma
,
Wanpeng
Lu
,
Xue
Han
,
Yinlin
Chen
,
Ivan
Da Silva
,
Daniel
Lee
,
Alena M.
Sheveleva
,
Zi
Wang
,
Jiangnan
Li
,
Weiyao
Li
,
Mengtian
Fan
,
Shaojun
Xu
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Yongqiang
Cheng
,
Svemir
Rudic
,
Pascal
Manuel
,
Mark D.
Frogley
,
Anibal J.
Ramirez-Cuesta
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[19850]
Open Access
Abstract: The presence of active sites in metal–organic framework (MOF) materials can control and affect their performance significantly in adsorption and catalysis. However, revealing the interactions between the substrate and active sites in MOFs at atomic precision remains a challenging task. Here, we report the direct observation of binding of NH3 in a series of UiO-66 materials containing atomically dispersed defects and open Cu(I) and Cu(II) sites. While all MOFs in this series exhibit similar surface areas (1111–1135 m2 g–1), decoration of the −OH site in UiO-66-defect with Cu(II) results in a 43% enhancement of the isothermal uptake of NH3 at 273 K and 1.0 bar from 11.8 in UiO-66-defect to 16.9 mmol g–1 in UiO-66-CuII. A 100% enhancement of dynamic adsorption of NH3 at a concentration level of 630 ppm from 2.07 mmol g–1 in UiO-66-defect to 4.15 mmol g–1 in UiO-66-CuII at 298 K is observed. In situ neutron powder diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, and infrared spectroscopies, coupled with modeling reveal that the enhanced NH3 uptake in UiO-66-CuII originates from a {Cu(II)···NH3} interaction, with a reversible change in geometry at Cu(II) from near-linear to trigonal coordination. This work represents the first example of structural elucidation of NH3 binding in MOFs containing open metal sites and will inform the design of new efficient MOF sorbents by targeted control of active sites for NH3 capture and storage.
|
May 2022
|
|
I11-High Resolution Powder Diffraction
I20-EDE-Energy Dispersive EXAFS (EDE)
|
Longfei
Lin
,
Mengtian
Fan
,
Alena M.
Sheveleva
,
Xue
Han
,
Zhimou
Tang
,
Joseph H.
Carter
,
Ivan
Da Silva
,
Christopher
Parlett
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
German
Sastre
,
Svemir
Rudic
,
Hamish
Cavaye
,
Stewart F.
Parker
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Martin P.
Attfield
,
Yueming
Liu
,
Chiu C.
Tang
,
Buxing
Han
,
Sihai
Yang
Diamond Proposal Number(s):
[2359]
Open Access
Abstract: Optimising the balance between propene selectivity, propene/ethene ratio and catalytic stability and unravelling the explicit mechanism on formation of the first carbon–carbon bond are challenging goals of great importance in state-of-the-art methanol-to-olefin (MTO) research. We report a strategy to finely control the nature of active sites within the pores of commercial MFI-zeolites by incorporating tantalum(V) and aluminium(III) centres into the framework. The resultant TaAlS-1 zeolite exhibits simultaneously remarkable propene selectivity (51%), propene/ethene ratio (8.3) and catalytic stability (>50 h) at full methanol conversion. In situ synchrotron X-ray powder diffraction, X-ray absorption spectroscopy and inelastic neutron scattering coupled with DFT calculations reveal that the first carbon–carbon bond is formed between an activated methanol molecule and a trimethyloxonium intermediate. The unprecedented cooperativity between tantalum(V) and Brønsted acid sites creates an optimal microenvironment for efficient conversion of methanol and thus greatly promotes the application of zeolites in the sustainable manufacturing of light olefins.
|
Feb 2021
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Longfei
Lin
,
Alena M.
Sheveleva
,
Ivan
Da Silva
,
Christopher M. A.
Parlett
,
Zhimou
Tang
,
Yueming
Liu
,
Mengtian
Fan
,
Xue
Han
,
Joseph H.
Carter
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Svemir
Rudic
,
Anibal J.
Ramirez-Cuesta
,
Chiu C.
Tang
,
Sihai
Yang
Diamond Proposal Number(s):
[15151, 24726]
Abstract: The efficient production of light olefins from renewable biomass is a vital and challenging target to achieve future sustainable chemical processes. Here we report a hetero-atomic MFI-type zeolite (NbAlS-1), over which aqueous solutions of γ-valerolactone (GVL), obtained from biomass-derived carbohydrates, can be quantitatively converted into butenes with a yield of >99% at ambient pressure under continuous flow conditions. NbAlS-1 incorporates simultaneously niobium(v) and aluminium(iii) centres into the framework and thus has a desirable distribution of Lewis and Brønsted acid sites with optimal strength. Synchrotron X-ray diffraction and absorption spectroscopy show that there is cooperativity between Nb(v) and the Brønsted acid sites on the confined adsorption of GVL, whereas the catalytic mechanism for the conversion of the confined GVL into butenes is revealed by in situ inelastic neutron scattering, coupled with modelling. This study offers a prospect for the sustainable production of butene as a platform chemical for the manufacture of renewable materials.
|
Dec 2019
|
|