I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[38144]
Open Access
Abstract: Bacteria encode a panoply of defence systems to overcome phage infection. In recent years, over 100 defence systems have been identified, with the majority of these found co-localized in defence islands. Although there has been much progress in understanding the mechanisms of anti-phage defence employed by bacteria, far less is known about their regulation before and during phage infection. Here, we describe RptR (RMS-proximal transcriptional regulator), a small transcriptional regulator of a defence island in enteropathogenic Escherichia coli composed of a toxin–antitoxin system, DarTG2, embedded within a Type I restriction–modification system (RMS). We determined the molecular structure of a RptR homodimer and, using transcriptional reporter and in vitro DNA binding assays, show that RptR represses the promoter of the defence island by binding to a series of three direct repeats in the promoter. Furthermore, we demonstrate, using the structural models of RptR validated with electrophoretic mobility shift assays, that the minimal RptR binding site is a 6-bp palindrome, TAGCTA. Both RptR and its binding site are highly conserved across diverse bacterial genomes with a strong genetic association with Type I RMS, highlighting the role of RptR as a novel regulatory component of an important mechanism for anti-phage defence in bacteria.
|
Jul 2025
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9306, 12346, 15613]
Open Access
Abstract: Dynamic ADP-ribosylation signalling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species and infection. In some pathogenic microbes the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host’s innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterise the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.
|
Sep 2024
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Esra
Balikci
,
Anne-Sophie M. C.
Marques
,
Ludwig G.
Bauer
,
Raina
Seupel
,
James
Bennett
,
Brigitt
Raux
,
Karly
Buchan
,
Klemensas
Simelis
,
Usha
Singh
,
Catherine
Rogers
,
Jennifer
Ward
,
Carol
Cheng
,
Tamas
Szommer
,
Kira
Schützenhofer
,
Jonathan M.
Elkins
,
David L.
Sloman
,
Ivan
Ahel
,
Oleg
Fedorov
,
Paul E.
Brennan
,
Kilian V. M.
Huber
Diamond Proposal Number(s):
[19301, 28172]
Open Access
Abstract: Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead. Further investigation of the prototypical BTK inhibitor ibrutinib also revealed potent inhibition of the largely unstudied NUDIX hydrolase family member NUDT14. By exploring structure–activity relationships (SARs) around the core scaffold, we identify a potent, noncovalent, and cell-active dual NUDT5/14 inhibitor. Cocrystallization experiments yielded new insights into the NUDT14 hydrolase active site architecture and inhibitor binding, thus providing a basis for future chemical probe design.
|
Apr 2024
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12346, 18069]
Open Access
Abstract: In the mammalian DNA damage response, ADP-ribosylation signalling is of crucial importance to mark sites of DNA damage as well as recruit and regulate repairs factors. Specifically, the PARP1:HPF1 complex recognises damaged DNA and catalyses the formation of serine-linked ADP-ribosylation marks (mono-Ser-ADPr), which are extended into ADP-ribose polymers (poly-Ser-ADPr) by PARP1 alone. Poly-Ser-ADPr is reversed by PARG, while the terminal mono-Ser-ADPr is removed by ARH3. Despite its significance and apparent evolutionary conservation, little is known about ADP-ribosylation signalling in non-mammalian Animalia. The presence of HPF1, but absence of ARH3, in some insect genomes, including Drosophila species, raises questions regarding the existence and reversal of serine-ADP-ribosylation in these species. Here we show by quantitative proteomics that Ser-ADPr is the major form of ADP-ribosylation in the DNA damage response of Drosophila melanogaster and is dependent on the dParp1:dHpf1 complex. Moreover, our structural and biochemical investigations uncover the mechanism of mono-Ser-ADPr removal by Drosophila Parg. Collectively, our data reveal PARP:HPF1-mediated Ser-ADPr as a defining feature of the DDR in Animalia. The striking conservation within this kingdom suggests that organisms that carry only a core set of ADP-ribosyl metabolising enzymes, such as Drosophila, are valuable model organisms to study the physiological role of Ser-ADPr signalling.
|
Jun 2023
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[23459]
Open Access
Abstract: Modification of nucleic acids by ADP-ribosylation is catalyzed by various ADP-ribosyltransferases, including the DarT enzyme. The latter is part of the bacterial toxin-antitoxin (TA) system DarTG, which was shown to provide control of DNA replication and bacterial growth as well as protection against bacteriophages. Two subfamilies have been identified, DarTG1 and DarTG2, which are distinguished by their associated antitoxins. While DarTG2 catalyzes reversible ADP-ribosylation of thymidine bases employing a macrodomain as antitoxin, the DNA ADP-ribosylation activity of DarTG1 and the biochemical function of its antitoxin, a NADAR domain, are as yet unknown. Using structural and biochemical approaches, we show that DarT1-NADAR is a TA system for reversible ADP-ribosylation of guanosine bases. DarT1 evolved the ability to link ADP-ribose to the guanine amino group, which is specifically hydrolyzed by NADAR. We show that guanine de-ADP-ribosylation is also conserved among eukaryotic and non-DarT-associated NADAR members, indicating a wide distribution of reversible guanine modifications beyond DarTG systems.
|
Jun 2023
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[23459]
Open Access
Abstract: The worldwide public health and socioeconomic consequences caused by the COVID-19 pandemic highlight the importance of increasing preparedness for viral disease outbreaks by providing rapid disease prevention and treatment strategies. The NSP3 macrodomain of coronaviruses including SARS-CoV-2 is among the viral protein repertoire that was identified as a potential target for the development of antiviral agents, due to its critical role in viral replication and consequent pathogenicity in the host. By combining virtual and biophysical screening efforts, we discovered several experimental small molecules and FDA-approved drugs as inhibitors of the NSP3 macrodomain. Analogue characterisation of the hit matter and crystallographic studies confirming binding modes, including that of the antibiotic compound aztreonam, to the active site of the macrodomain provide valuable structure–activity relationship information that support current approaches and open up new avenues for NSP3 macrodomain inhibitor development.
|
Feb 2023
|
|
|
Stefan
Gahbauer
,
Galen J.
Correy
,
Marion
Schuller
,
Matteo P.
Ferla
,
Yagmur Umay
Doruk
,
Moira
Rachman
,
Taiasean
Wu
,
Morgan
Diolaiti
,
Siyi
Wang
,
R. Jeffrey
Neitz
,
Daren
Fearon
,
Dmytro S.
Radchenko
,
Yurii S.
Moroz
,
John J.
Irwin
,
Adam R.
Renslo
,
Jenny C.
Taylor
,
Jason E.
Gestwicki
,
Frank
Von Delft
,
Alan
Ashworth
,
Ivan
Ahel
,
Brian K.
Shoichet
,
James S.
Fraser
Open Access
Abstract: The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small-molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic, there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high-resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 153 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated conformational changes within the active site, and key inhibitor motifs that will template future drug development against Mac1.
|
Jan 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18069]
Open Access
Abstract: ADP-ribosyltransferases use NAD+ to catalyse substrate ADP-ribosylation1, and thereby regulate cellular pathways or contribute to toxin-mediated pathogenicity of bacteria2,3,4. Reversible ADP-ribosylation has traditionally been considered a protein-specific modification5, but recent in vitro studies have suggested nucleic acids as targets6,7,8,9. Here we present evidence that specific, reversible ADP-ribosylation of DNA on thymidine bases occurs in cellulo through the DarT–DarG toxin–antitoxin system, which is found in a variety of bacteria (including global pathogens such as Mycobacterium tuberculosis, enteropathogenic Escherichia coli and Pseudomonas aeruginosa)10. We report the structure of DarT, which identifies this protein as a diverged member of the PARP family. We provide a set of high-resolution structures of this enzyme in ligand-free and pre- and post-reaction states, which reveals a specialized mechanism of catalysis that includes a key active-site arginine that extends the canonical ADP-ribosyltransferase toolkit. Comparison with PARP–HPF1, a well-established DNA repair protein ADP-ribosylation complex, offers insights into how the DarT class of ADP-ribosyltransferases evolved into specific DNA-modifying enzymes. Together, our structural and mechanistic data provide details of this PARP family member and contribute to a fundamental understanding of the ADP-ribosylation of nucleic acids. We also show that thymine-linked ADP-ribose DNA adducts reversed by DarG antitoxin (functioning as a noncanonical DNA repair factor) are used not only for targeted DNA damage to induce toxicity, but also as a signalling strategy for cellular processes. Using M. tuberculosis as an exemplar, we show that DarT–DarG regulates growth by ADP-ribosylation of DNA at the origin of chromosome replication.
|
Aug 2021
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Johannes Gregor Matthias
Rack
,
Qiang
Liu
,
Valentina
Zorzini
,
Jim
Voorneveld
,
Antonio
Ariza
,
Kourosh
Honarmand Ebrahimi
,
Julia M.
Reber
,
Sarah C.
Krassnig
,
Dragana
Ahel
,
Gijsbert A.
Van Der Marel
,
Aswin
Mangerich
,
James S. O.
Mccullagh
,
Dmitri V.
Filippov
,
Ivan
Ahel
Diamond Proposal Number(s):
[18069, 23459]
Open Access
Abstract: Poly(ADP-ribosyl)ation (PAR) is a versatile and complex posttranslational modification composed of repeating units of ADP-ribose arranged into linear or branched polymers. This scaffold is linked to the regulation of many of cellular processes including the DNA damage response, alteration of chromatin structure and Wnt signalling. Despite decades of research, the principles and mechanisms underlying all steps of PAR removal remain actively studied. In this work, we synthesise well-defined PAR branch point molecules and demonstrate that PARG, but not ARH3, can resolve this distinct PAR architecture. Structural analysis of ARH3 in complex with dimeric ADP-ribose as well as an ADP-ribosylated peptide reveal the molecular basis for the hydrolysis of linear and terminal ADP-ribose linkages. We find that ARH3-dependent hydrolysis requires both rearrangement of a catalytic glutamate and induction of an unusual, square-pyramidal magnesium coordination geometry.
|
Jul 2021
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Dávid
Bajusz
,
Warren S.
Wade
,
Grzegorz
Satała
,
Andrzej J.
Bojarski
,
Janez
Ilaš
,
Jessica
Ebner
,
Florian
Grebien
,
Henrietta
Papp
,
Ferenc
Jakab
,
Alice
Douangamath
,
Daren
Fearon
,
Frank
Von Delft
,
Marion
Schuller
,
Ivan
Ahel
,
Amanda
Wakefield
,
Sándor
Vajda
,
János
Gerencsér
,
Péter
Pallai
,
György M.
Keserű
Diamond Proposal Number(s):
[27001, 18145, 27963]
Open Access
Abstract: Fragment-based drug design has introduced a bottom-up process for drug development, with improved sampling of chemical space and increased effectiveness in early drug discovery. Here, we combine the use of pharmacophores, the most general concept of representing drug-target interactions with the theory of protein hotspots, to develop a design protocol for fragment libraries. The SpotXplorer approach compiles small fragment libraries that maximize the coverage of experimentally confirmed binding pharmacophores at the most preferred hotspots. The efficiency of this approach is demonstrated with a pilot library of 96 fragment-sized compounds (SpotXplorer0) that is validated on popular target classes and emerging drug targets. Biochemical screening against a set of GPCRs and proteases retrieves compounds containing an average of 70% of known pharmacophores for these targets. More importantly, SpotXplorer0 screening identifies confirmed hits against recently established challenging targets such as the histone methyltransferase SETD2, the main protease (3CLPro) and the NSP3 macrodomain of SARS-CoV-2.
|
May 2021
|
|