|
Abstract: A family of leucine-rich-repeat-containing G-protein-coupled receptors (LGRs) mediate diverse physiological responses when complexed with their cognate ligands. LGRs are present in all metazoan animals. In humans, the LGR ligands include glycoprotein hormones (GPHs) chorionic gonadotropin (hCG), luteinizing hormone, follicle-stimulating hormone (hFSH), and thyroid-stimulating hormone (hTSH). These hormones are αβ heterodimers of cystine-knot protein chains. LGRs and their ligand chains have coevolved. Ancestral hormone homologs, present in both bilaterian animals and chordates, are identified as α2β5. We have used single-wavelength anomalous diffraction and molecular replacement to determine structures of the α2β5 hormone from Caenorhabditis elegans (Ceα2β5). Ceα2β5 is unglycosylated, as are many other α2β5 hormones. Both Hsα2β5, the human homolog of Ceα2β5, and hTSH activate the same receptor (hTSHR). Despite having little sequence similarity to vertebrate GPHs, apart from the cysteine patterns from core disulfide bridges, Ceα2β5 is generally similar in structure to these counterparts; however, its α2 and β5 subunits are more symmetric as compared with α and β of hCG and hFSH. This quasisymmetry suggests a hypothetical homodimeric antecedent of the α2β5 and αβ heterodimers. Known structures together with AlphaFold models from the sequences for other LGR ligands provide representatives for the molecular evolution of LGR ligands from early metazoans through the present-day GPHs. The experimental Ceα2β5 structure validates its AlphaFold model, and thus also that for Hsα2β5; and interfacial characteristics in a model for the Hsα2β5:hTSHR complex are similar to those found in an experimental hTSH:hTSHR structure.
|
Dec 2022
|
|
I23-Long wavelength MX
|
Tai-Ying
Chu
,
Céline
Zheng-Gérard
,
Kuan-Yeh
Huang
,
Yu-Chi
Chang
,
Ying-Wen
Chen
,
Kuan-Yu
I
,
Yu-Ling
Lo
,
Nien-Yi
Chiang
,
Hsin-Yi
Chen
,
Martin
Stacey
,
Siamon
Gordon
,
Wen-Yi
Tseng
,
Chiao-Yin
Sun
,
Yen-Mu
Wu
,
Yi-Shin
Pan
,
Chien-Hao
Huang
,
Chun-Yen
Lin
,
Tse-Ching
Chen
,
Kamel
El Omari
,
Marilina
Antonelou
,
Scott R.
Henderson
,
Alan
Salama
,
Elena
Seiradake
,
Hsi-Hsien
Lin
Open Access
Abstract: Neutrophils play essential anti-microbial and inflammatory roles in host defense, however, their activities require tight regulation as dysfunction often leads to detrimental inflammatory and autoimmune diseases. Here we show that the adhesion molecule GPR97 allosterically activates CD177-associated membrane proteinase 3 (mPR3), and in conjugation with several protein interaction partners leads to neutrophil activation in humans. Crystallographic and deletion analysis of the GPR97 extracellular region identified two independent mPR3-binding domains. Mechanistically, the efficient binding and activation of mPR3 by GPR97 requires the macromolecular CD177/GPR97/PAR2/CD16b complex and induces the activation of PAR2, a G protein-coupled receptor known for its function in inflammation. Triggering PAR2 by the upstream complex leads to strong inflammatory activation, prompting anti-microbial activities and endothelial dysfunction. The role of the complex in pathologic inflammation is underscored by the finding that both GPR97 and mPR3 are upregulated on the surface of disease-associated neutrophils. In summary, we identify a PAR2 activation mechanism that directs neutrophil activation, and thus inflammation. The PR3/CD177/GPR97/PAR2/CD16b protein complex, therefore, represents a potential therapeutic target for neutrophil-mediated inflammatory diseases.
|
Oct 2022
|
|
I04-Macromolecular Crystallography
I23-Long wavelength MX
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[23459]
Open Access
Abstract: Amino acid transporters play a key role controlling the flow of nutrients across the lysosomal membrane and regulating metabolism in the cell. Mutations in the gene encoding the transporter cystinosin result in cystinosis, an autosomal recessive metabolic disorder characterised by the accumulation of cystine crystals in the lysosome. Cystinosin is a member of the PQ-loop family of solute carrier (SLC) transporters and uses the proton gradient to drive cystine export into the cytoplasm. However, the molecular basis for cystinosin function remains elusive, hampering efforts to develop novel treatments for cystinosis and understand the mechanisms of ion driven transport in the PQ-loop family. To address these questions, we present the crystal structures of cystinosin from Arabidopsis thaliana in both apo and cystine bound states. Using a combination of in vitro and in vivo based assays, we establish a mechanism for cystine recognition and proton coupled transport. Mutational mapping and functional characterisation of human cystinosin further provide a framework for understanding the molecular impact of disease-causing mutations.
|
Aug 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[18548, 25402]
Abstract: The abundance of recorded protein sequence data stands in contrast to the small number of experimentally verified functional annotation. Here we screened a million-membered metagenomic library at ultrahigh throughput in microfluidic droplets for β-glucuronidase activity. We identified SN243, a genuine β-glucuronidase with little homology to previously studied enzymes of this type, as a glycoside hydrolase 3 family member. This glycoside hydrolase family contains only one recently added β-glucuronidase, showing that a functional metagenomic approach can shed light on assignments that are currently ‘unpredictable’ by bioinformatics. Kinetic analyses of SN243 characterized it as a promiscuous catalyst and structural analysis suggests regions of divergence from homologous glycoside hydrolase 3 members creating a wide-open active site. With a screening throughput of >107 library members per day, picolitre-volume microfluidic droplets enable functional assignments that complement current enzyme database dictionaries and provide bridgeheads for the annotation of unexplored sequence space.
|
Jul 2022
|
|
I04-Macromolecular Crystallography
I23-Long wavelength MX
I24-Microfocus Macromolecular Crystallography
Krios III-Titan Krios III at Diamond
|
Paola
Lanzoni-Mangutchi
,
Oishik
Banerji
,
Jason
Wilson
,
Anna
Barwinska-Sendra
,
Joseph A.
Kirk
,
Filipa
Vaz
,
Shauna
O’beirne
,
Arnaud
Basle
,
Kamel
El Omari
,
Armin
Wagner
,
Neil F.
Fairweather
,
Gillian R.
Douce
,
Per A.
Bullough
,
Robert P.
Fagan
,
Paula
Salgado
Diamond Proposal Number(s):
[15523, 18598, 19832]
Open Access
Abstract: Many bacteria and archaea possess a two-dimensional protein array, or S-layer, that covers the cell surface and plays crucial roles in cell physiology. Here, we report the crystal structure of SlpA, the main S-layer protein of the bacterial pathogen Clostridioides difficile, and use electron microscopy to study S-layer organisation and assembly. The SlpA crystal lattice mimics S-layer assembly in the cell, through tiling of triangular prisms above the cell wall, interlocked by distinct ridges facing the environment. Strikingly, the array is very compact, with pores of only ~10 Å in diameter, compared to other S-layers (30–100 Å). The surface-exposed flexible ridges are partially dispensable for overall structure and assembly, although a mutant lacking this region becomes susceptible to lysozyme, an important molecule in host defence. Thus, our work gives insights into S-layer organisation and provides a basis for development of C. difficile-specific therapeutics.
|
Feb 2022
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I23-Long wavelength MX
|
Leandro
Oliveira Bortot
,
Victor
Lopes Rangel
,
Francesca A.
Pavlovici
,
Kamel
El Omari
,
Armin
Wagner
,
Jose
Brandao-Neto
,
Romain
Talon
,
Frank
Von Delft
,
Andrew G.
Reidenbach
,
Sonia M.
Vallabh
,
Eric
Vallabh Minikel
,
Stuart
Schreiber
,
Maria Cristina
Nonato
Diamond Proposal Number(s):
[18954]
Abstract: Prion disease is caused by the misfolding of the cellular prion protein, PrPC, into a self-templating conformer, PrPSc. Nuclear magnetic resonance (NMR) and X-ray crystallography revealed the 3D structure of the globular domain of PrPC and the possibility of its dimerization via an interchain disulfide bridge that forms due to domain swap or by non-covalent association of two monomers. On the contrary, PrPSc is composed by a complex and heterogeneous ensemble of poorly defined conformations and quaternary arrangements that are related to different patterns of neurotoxicity. Targeting PrPC with molecules that stabilize the native conformation of its globular domain emerged as a promising approach to develop anti-prion therapies. One of the advantages of this approach is employing structure-based drug discovery methods to PrPC. Thus, it is essential to expand our structural knowledge about PrPC as much as possible to aid such drug discovery efforts. In this work, we report a crystallographic structure of the globular domain of human PrPC that shows a novel dimeric form and a novel oligomeric arrangement. We use molecular dynamics simulations to explore its structural dynamics and stability and discuss potential implications of these new quaternary structures to the conversion process.
|
Dec 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Samuel C.
Griffiths
,
Rebekka A.
Schwab
,
Kamel
El Omari
,
Benjamin
Bishop
,
Ellen J.
Iverson
,
Tomas
Malinauskas
,
Ramin
Dubey
,
Mingxing
Qian
,
Douglas F.
Covey
,
Robert J. C.
Gilbert
,
Rajat
Rohatgi
,
Christian
Siebold
Diamond Proposal Number(s):
[19946, 14744]
Open Access
Abstract: Hedgehog (HH) morphogen signalling, crucial for cell growth and tissue patterning in animals, is initiated by the binding of dually lipidated HH ligands to cell surface receptors. Hedgehog-Interacting Protein (HHIP), the only reported secreted inhibitor of Sonic Hedgehog (SHH) signalling, binds directly to SHH with high nanomolar affinity, sequestering SHH. Here, we report the structure of the HHIP N-terminal domain (HHIP-N) in complex with a glycosaminoglycan (GAG). HHIP-N displays a unique bipartite fold with a GAG-binding domain alongside a Cysteine Rich Domain (CRD). We show that HHIP-N is required to convey full HHIP inhibitory function, likely by interacting with the cholesterol moiety covalently linked to HH ligands, thereby preventing this SHH-attached cholesterol from binding to the HH receptor Patched (PTCH1). We also present the structure of the HHIP C-terminal domain in complex with the GAG heparin. Heparin can bind to both HHIP-N and HHIP-C, thereby inducing clustering at the cell surface and generating a high-avidity platform for SHH sequestration and inhibition. Our data suggest a multimodal mechanism, in which HHIP can bind two specific sites on the SHH morphogen, alongside multiple GAG interactions, to inhibit SHH signalling.
|
Dec 2021
|
|
I23-Long wavelength MX
|
Matthew
Herdman
,
Andriko
Von Kugelgen
,
Danguole
Kureisaite-Ciziene
,
Ramona
Duman
,
Kamel
El Omari
,
Elspeth F.
Garman
,
Andreas
Kjaer
,
Dimitrios
Kolokouris
,
Jan
Lowe
,
Armin
Wagner
,
Phillip J.
Stansfeld
,
Tanmay A. M.
Bharat
Open Access
Abstract: Surface layers (S-layers) are proteinaceous crystalline coats that constitute the outermost component of most prokaryotic cell envelopes. In this study, we have investigated the role of metal ions in the formation of the Caulobacter crescentus S-layer using high-resolution structural and cell biology techniques, as well as molecular simulations. Utilizing optical microscopy of fluorescently tagged S-layers, we show that calcium ions facilitate S-layer lattice formation and cell-surface binding. We report all-atom molecular dynamics simulations of the S-layer lattice, revealing the importance of bound metal ions. Finally, using electron cryomicroscopy and long-wavelength X-ray diffraction experiments, we mapped the positions of metal ions in the S-layer at near-atomic resolution, supporting our insights from the cellular and simulations data. Our findings contribute to the understanding of how C. crescentus cells form a regularly arranged S-layer on their surface, with implications on fundamental S-layer biology and the synthetic biology of self-assembling biomaterials.
|
Nov 2021
|
|
I04-Macromolecular Crystallography
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[20145]
Open Access
Abstract: Pivotal to the regulation of key cellular processes such as the transcription, replication and repair of DNA, DNA-binding proteins play vital roles in all aspects of genetic activity. The determination of high-quality structures of DNA-binding proteins, particularly those in complexes with DNA, provides crucial insights into the understanding of these processes. The presence in such complexes of phosphate-rich oligonucleotides offers the choice of a rapid method for the routine solution of DNA-binding proteins through the use of long-wavelength beamlines such as I23 at Diamond Light Source. This article reports the use of native intrinsic phosphorus and sulfur single-wavelength anomalous dispersion methods to solve the complex of the DNA-binding domain (DBD) of interferon regulatory factor 4 (IRF4) bound to its interferon-stimulated response element (ISRE). The structure unexpectedly shows three molecules of the IRF4 DBD bound to one ISRE. The sole reliance on native intrinsic anomalous scattering elements that belong to DNA–protein complexes renders the method of general applicability to a large number of such protein complexes that cannot be solved by molecular replacement or by other phasing methods.
|
Jul 2021
|
|
|
Open Access
Abstract: For two decades, the genus pestivirus has been expanding and the host range now extends to rodents, bats and marine mammals. In this review, we focus on one of the most diverse pestiviruses, atypical porcine pestivirus or pestivirus K, comparing its special traits to what is already known at the structural and functional level from other pestiviruses.
|
Apr 2021
|
|