B21-High Throughput SAXS
|
Anna-Maria
Herzog
,
Katharina
Göbel
,
Luigi
Marongiu
,
Natalia
Ruetalo
,
Marta
Campos Alonso
,
Christian
Leischner
,
Christian
Busch
,
Markus
Burkard
,
Ulrich M.
Lauer
,
Paul P.
Geurink
,
Klaus-Peter
Knobeloch
,
Michael
Schindler
,
Guenter
Fritz
,
Sascha
Venturelli
Abstract: Background: Selected natural compounds exhibit very good antiviral properties. Especially, the medicinal plant Humulus lupulus (hop) contains several secondary plant metabolites some of which have previously shown antiviral activities. Among them, the prenylated chalcone xanthohumol (XN) demonstrated to be a potent inhibitor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) main protease (Mpro). Hypothesis/Purpose: Following the finding that xanthohumol (XN) is a potent inhibitor of SARS-CoV-2 Mpro, the effect of XN and its major derivatives isoxanthohumol (IXN), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN) from hops on SARS-CoV-2 papain-like protease (PLpro) were investigated. Study Design: The modulatory effect of the hop compounds on PLpro were studied first in silico and then in vitro. In addition, the actual effect of hop compounds on the replication of SARS-CoV-2 in host cells was investigated. Methods: In silico docking analysis was used to predict the binding affinity of hop compounds to the active site of PLpro. A recombinant PLpro was cloned, purified, characterized, and analyzed by small-angle X-ray scattering (SAXS), deISGylation assays, and kinetic analyses. Antiviral activity of hop compounds was assessed using the fluorescently labeled wildtype SARS-CoV-2 (icSARS-CoV-2-mNG) in Caco-2 host cells. Results: Our in silico docking suggests that the purified hop compounds bind to the active site of SARS-CoV-2 PLpro blocking the access of its natural substrates. The hop-derived compounds inhibit SARS-CoV-2 PLpro with half maximal inhibitory concentration (IC50) values in the range of 59–162 µM. Furthermore, we demonstrate that XN and 6-PN, in particular, impede viral replication with IC50 values of 3.3 µM and 7.3 µM, respectively. Conclusion: In addition to the already known inhibition of Mpro by XN, our results show, for the first time, that hop-derived compounds target also SARS-CoV-2 PLpro which is a promising therapeutic target as it contributes to both viral replication and modulation of the immune system. These findings support the possibility to develop new hop-derived antiviral drugs targeting human coronaviruses.
|
Oct 2023
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Jin
Gan
,
Jelle
De Vries
,
Jimmy J. L. L.
Akkermans
,
Yassene
Mohammed
,
Rayman T. N.
Tjokrodirijo
,
Arnoud H.
De Ru
,
Robbert Q.
Kim
,
David A.
Vargas
,
Vito
Pol
,
Rudi
Fasan
,
Peter A.
Van Veelen
,
Jacques
Neefjes
,
Hans
Van Dam
,
Huib
Ovaa
,
Aysegul
Sapmaz
,
Paul P.
Geurink
Diamond Proposal Number(s):
[19800]
Open Access
Abstract: Ubiquitin thioesterase OTUB2, a cysteine protease from the ovarian tumor (OTU) deubiquitinase superfamily, is often overexpressed during tumor progression and metastasis. Development of OTUB2 inhibitors is therefore believed to be therapeutically important, yet potent and selective small-molecule inhibitors targeting OTUB2 are scarce. Here, we describe the development of an improved OTUB2 inhibitor, LN5P45, comprising a chloroacethydrazide moiety that covalently reacts to the active-site cysteine residue. LN5P45 shows outstanding target engagement and proteome-wide selectivity in living cells. Importantly, LN5P45 as well as other OTUB2 inhibitors strongly induce monoubiquitination of OTUB2 on lysine 31. We present a route to future OTUB2-related therapeutics and have shown that the OTUB2 inhibitor developed in this study can help to uncover new aspects of the related biology and open new questions regarding the understanding of OTUB2 regulation at the post-translational modification level.
|
Aug 2023
|
|
I03-Macromolecular Crystallography
|
Daniël
Van Der Gracht
,
Rhianna J.
Rowland
,
Véronique
Roig-Zamboni
,
Maria J.
Ferraz
,
Max
Louwerse
,
Paul P.
Geurink
,
Johannes M. F. G.
Aerts
,
Gerlind
Sulzenbacher
,
Gideon J.
Davies
,
Herman S.
Overkleeft
,
Marta
Artola
Diamond Proposal Number(s):
[24948]
Open Access
Abstract: Lysosomal exoglycosidases are responsible for processing endocytosed glycans from the non-reducing end to produce the corresponding monosaccharides. Genetic mutations in a particular lysosomal glycosidase may result in accumulation of its particular substrate, which may cause diverse lysosomal storage disorders. The identification of effective therapeutic modalities to treat these diseases is a major yet poorly realised objective in biomedicine. One common strategy comprises the identification of effective and selective competitive inhibitors that may serve to stabilize the proper folding of the mutated enzyme, either during maturation and trafficking to, or residence in, endo-lysosomal compartments. The discovery of such inhibitors is greatly aided by effective screening assays, the development of which is the focus of the here-presented work. We developed and applied fluorescent activity-based probes reporting on either human GH30 lysosomal glucosylceramidase (GBA1, a retaining β-glucosidase) or GH31 lysosomal retaining α-glucosidase (GAA). FluoPol-ABPP screening of our in-house 358-member iminosugar library yielded compound classes selective for either of these enzymes. In particular, we identified a class of N-alkyldeoxynojirimycins that inhibit GAA, but not GBA1, and that may form the starting point for the development of pharmacological chaperone therapeutics for the lysosomal glycogen storage disease that results from genetic deficiency in GAA: Pompe disease.
|
Aug 2023
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19800]
Open Access
Abstract: The multifunctional human Parkinson’s disease protein 7 (PARK7/DJ1) is an attractive therapeutic target due to its link with early-onset Parkinson’s disease, upregulation in various cancers, and contribution to chemoresistance. However, only a few compounds have been identified to bind PARK7 due to the lack of a dedicated chemical toolbox. We report the creation of such a toolbox and showcase the application of each of its components. The selective PARK7 submicromolar inhibitor with a cyanimide reactive group covalently modifies the active site Cys106. Installment of different dyes onto the inhibitor delivered two PARK7 probes. The Rhodamine110 probe provides a high-throughput screening compatible FP assay, showcased by screening a compound library (8000 molecules). The SulfoCy5-equipped probe is a valuable tool to assess the effect of PARK7 inhibitors in a cell lysate. Our work creates new possibilities to explore PARK7 function in a physiologically relevant setting and develop new and improved PARK7 inhibitors.
|
Sep 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Zachary
Armstrong
,
Chi-Lin
Kuo
,
Daniël
Lahav
,
Bing
Liu
,
Rachel
Johnson
,
Thomas J. M.
Beenakker
,
Casper
De Boer
,
Chung-Sing
Wong
,
Erwin R.
Van Rijssel
,
Marjoke F.
Debets
,
Bogdan I.
Florea
,
Colin
Hissink
,
Rolf G.
Boot
,
Paul P.
Geurink
,
Huib
Ovaa
,
Mario
Van Der Stelt
,
Gijsbert M.
Van Der Marel
,
Jeroen D. C.
Codée
,
Johannes M. F. G.
Aerts
,
Liang
Wu
,
Herman S.
Overkleeft
,
Gideon
Davies
Diamond Proposal Number(s):
[18598]
Abstract: Golgi mannosidase II (GMII) catalyzes the sequential hydrolysis of two mannosyl residues from GlcNAcMan5GlcNAc2 to produce GlcNAcMan3GlcNAc2, the precursor for all complex N-glycans, including the branched N-glycans associated with cancer. Inhibitors of GMII are potential cancer therapeutics, but their usefulness is limited by off-target effects, which produce α-mannosidosis-like symptoms. Despite many structural and mechanistic studies of GMII, we still lack a potent and selective inhibitor of this enzyme. Here, we synthesized manno-epi-cyclophellitol epoxide and aziridines and demonstrate their covalent modification and time-dependent inhibition of GMII. Application of fluorescent manno-epi-cyclophellitol aziridine derivatives enabled activity-based protein profiling of α-mannosidases from both human cell lysate and mouse tissue extracts. Synthesized probes also facilitated a fluorescence polarization-based screen for dGMII inhibitors. We identified seven previously unknown inhibitors of GMII from a library of over 350 iminosugars and investigated their binding modalities through X-ray crystallography. Our results reveal previously unobserved inhibitor binding modes and promising scaffolds for the generation of selective GMII inhibitors.
|
Jul 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Alexander F.
Schubert
,
Justine V
Nguyen
,
Tyler G.
Franklin
,
Paul P.
Geurink
,
Cameron G.
Roberts
,
Daniel J.
Sanderson
,
Lauren N.
Miller
,
Huib
Ovaa
,
Kay
Hofmann
,
Jonathan N.
Pruneda
,
David
Komander
Diamond Proposal Number(s):
[8547, 11235]
Open Access
Abstract: Manipulation of host ubiquitin signaling is becoming an increasingly apparent evolutionary strategy among bacterial and viral pathogens. By removing host ubiquitin signals, for example, invading pathogens can inactivate immune response pathways and evade detection. The ovarian tumor (OTU) family of deubiquitinases regulates diverse ubiquitin signals in humans. Viral pathogens have also extensively co‐opted the OTU fold to subvert host signaling, but the extent to which bacteria utilize the OTU fold was unknown. We have predicted and validated a set of OTU deubiquitinases encoded by several classes of pathogenic bacteria. Biochemical assays highlight the ubiquitin and polyubiquitin linkage specificities of these bacterial deubiquitinases. By determining the ubiquitin‐bound structures of two examples, we demonstrate the novel strategies that have evolved to both thread an OTU fold and recognize a ubiquitin substrate. With these new examples, we perform the first cross‐kingdom structural analysis of the OTU fold that highlights commonalities among distantly related OTU deubiquitinases.
|
Jun 2020
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Efrat
Resnick
,
Anthony
Bradley
,
Jinrui
Gan
,
Alice
Douangamath
,
Tobias
Krojer
,
Ritika
Sethi
,
Paul P.
Geurink
,
Anthony
Aimon
,
Gabriel
Amitai
,
Dom
Bellini
,
James
Bennett
,
Michael
Fairhead
,
Oleg
Fedorov
,
Ronen
Gabizon
,
Jin
Gan
,
Jingxu
Guo
,
Alexander
Plotnikov
,
Nava
Reznik
,
Gian Filippo
Ruda
,
Laura
Diaz-Saez
,
Verena M.
Straub
,
Tamas
Szommer
,
Srikannathasan
Velupillai
,
Daniel
Zaidman
,
Yanling
Zhang
,
Alun R.
Coker
,
Christopher G.
Dowson
,
Haim
Barr
,
Chu
Wang
,
Kilian V. M.
Huber
,
Paul E.
Brennan
,
Huib
Ovaa
,
Frank
Von Delft
,
Nir
London
Open Access
Abstract: Covalent probes can display unmatched potency, selectivity and duration of action; however, their discovery is challenging. In principle, fragments that can irreversibly bind their target can overcome the low affinity that limits reversible fragment screening, but such electrophilic fragments were considered non-selective and were rarely screened. We hypothesized that mild electrophiles might overcome the selectivity challenge and constructed a library of 993 mildly electrophilic fragments. We characterized this library by a new high-throughput thiol-reactivity assay and screened them against ten cysteine-containing proteins. Highly reactive and promiscuous fragments were rare and could be easily eliminated. By contrast, we found hits for most targets. Combining our approach with high-throughput crystallography allowed rapid progression to potent and selective probes for two enzymes, the deubiquitinase OTUB2 and the pyrophosphatase NUDT7. No inhibitors were previously known for either. This study highlights the potential of electrophile-fragment screening as a practical and efficient tool for covalent-ligand discovery.
|
May 2019
|
|
I04-Macromolecular Crystallography
|
Kirby N.
Swatek
,
Martina
Aumayr
,
Jonathan N.
Pruneda
,
Linda J.
Visser
,
Stephen
Berryman
,
Anja F.
Kueck
,
Paul P.
Geurink
,
Huib
Ovaa
,
Frank J. M.
Van Kuppeveld
,
Tobias J.
Tuthill
,
Tim
Skern
,
David
Komander
Diamond Proposal Number(s):
[11235]
Open Access
Abstract: In response to viral infection, cells mount a potent inflammatory response that relies on ISG15 and ubiquitin posttranslational modifications. Many viruses use deubiquitinases and deISGylases that reverse these modifications and antagonize host signaling processes. We here reveal that the leader protease, Lbpro, from foot-and-mouth disease virus (FMDV) targets ISG15 and to a lesser extent, ubiquitin in an unprecedented manner. Unlike canonical deISGylases that hydrolyze the isopeptide linkage after the C-terminal GlyGly motif, Lbpro cleaves the peptide bond preceding the GlyGly motif. Consequently, the GlyGly dipeptide remains attached to the substrate Lys, and cleaved ISG15 is rendered incompetent for reconjugation. A crystal structure of Lbpro bound to an engineered ISG15 suicide probe revealed the molecular basis for ISG15 proteolysis. Importantly, anti-GlyGly antibodies, developed for ubiquitin proteomics, are able to detect Lbpro cleavage products during viral infection. This opens avenues for infection detection of FMDV based on an immutable, host-derived epitope.
|
Feb 2018
|
|
I03-Macromolecular Crystallography
|
Daniël
Lahav
,
Bing
Liu
,
Richard J. B. H. N.
Van Den Berg
,
Adrianus M. C. H.
Van Den Nieuwendijk
,
Tom
Wennekes
,
Amar T.
Ghisaidoobe
,
Imogen
Breen
,
Maria J.
Ferraz
,
Chi-Lin
Kuo
,
Liang
Wu
,
Paul P.
Geurink
,
Huib
Ovaa
,
Gijsbert A.
Van Der Marel
,
Mario
Van Der Stelt
,
Rolf G.
Boot
,
Gideon J.
Davies
,
Johannes M. F. G.
Aerts
,
Herman S.
Overkleeft
Diamond Proposal Number(s):
[13587]
Open Access
Abstract: Human nonlysosomal glucosylceramidase (GBA2) is one of several enzymes that controls levels of glycolipids and whose activity is linked to several human disease states. There is a major need to design or discover selective GBA2 inhibitors both as chemical tools and as potential therapeutic agents. Here, we describe the development of a fluorescence polarization activity-based protein profiling (FluoPol-ABPP) assay for the rapid identification, from a 350+ library of iminosugars, of GBA2 inhibitors. A focused library is generated based on leads from the FluoPol-ABPP screen and assessed on GBA2 selectivity offset against the other glucosylceramide metabolizing enzymes, glucosylceramide synthase (GCS), lysosomal glucosylceramidase (GBA), and the cytosolic retaining β-glucosidase, GBA3. Our work, yielding potent and selective GBA2 inhibitors, also provides a roadmap for the development of high-throughput assays for identifying retaining glycosidase inhibitors by FluoPol-ABPP on cell extracts containing recombinant, overexpressed glycosidase as the easily accessible enzyme source.
|
Sep 2017
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Anja
Basters
,
Paul P
Geurink
,
Annika
Röcker
,
Katharina F
Witting
,
Roya
Tadayon
,
Sandra
Hess
,
Marta S
Semrau
,
Paola
Storici
,
Huib
Ovaa
,
Klaus-Peter
Knobeloch
,
Günter
Fritz
Diamond Proposal Number(s):
[9694, 12090]
Abstract: Protein modification by ubiquitin and ubiquitin-like modifiers (Ubls) is counteracted by ubiquitin proteases and Ubl proteases, collectively termed DUBs. In contrast to other proteases of the ubiquitin-specific protease (USP) family, USP18 shows no reactivity toward ubiquitin but specifically deconjugates the interferon-induced Ubl ISG15. To identify the molecular determinants of this specificity, we solved the crystal structures of mouse USP18 alone and in complex with mouse ISG15. USP18 was crystallized in an open and a closed conformation, thus revealing high flexibility of the enzyme. Structural data, biochemical and mutational analysis showed that only the C-terminal ubiquitin-like domain of ISG15 is recognized and essential for USP18 activity. A critical hydrophobic patch in USP18 interacts with a hydrophobic region unique to ISG15, thus providing evidence that USP18's ISG15 specificity is mediated by a small interaction interface. Our results may provide a structural basis for the development of new drugs modulating ISG15 linkage.
|
Feb 2017
|
|