|
John D.
Clarke
,
Helen M. E.
Duyvesteyn
,
Eva
Perez-Martin
,
Undīne
Latišenko
,
Claudine
Porta
,
Kathleen V.
Humphreys
,
Abigail L.
Hay
,
Jingshan
Ren
,
Elizabeth E.
Fry
,
Erwin
Van Den Born
,
Bryan
Charleston
,
Marie
Bonnet-Di Placido
,
Raymond J.
Owens
,
David I.
Stuart
,
John A.
Hammond
Open Access
Abstract: Foot-and-mouth disease vaccination using inactivated virus is suboptimal, as the icosahedral viral capsids often disassemble into antigenically distinct pentameric units during long-term storage, or exposure to elevated temperature or lowered pH, and thus raise a response that is no longer protective. Furthermore, as foot-and-mouth disease virus (FMDV)’s seven serotypes are antigenically diverse, cross-protection from a single serotype vaccine is limited, and most existing mouse and bovine antibodies and camelid single-domain heavy chain-only antibodies are serotype-specific. For quality control purposes, there is a real need for pan-serotype antibodies that clearly distinguish between pentamer (12S) and protective intact FMDV capsid. To date, few cross-serotype bovine-derived antibodies have been reported in the literature. We identify a bovine antibody with an ultralong CDR-H3, Ab117, whose structural analysis reveals that it binds to a deep, hydrophobic pocket on the interior surface of the capsid via the CDR-H3. Main-chain and hydrophobic interactions provide broad serotype specificity. ELISA analysis confirms that Ab117 is a novel pan-serotype and conformational epitope-specific 12S reagent, suitable for assessing capsid integrity.
|
Oct 2024
|
|
Krios I-Titan Krios I at Diamond
|
Victoria A.
Avanzato
,
Trenton
Bushmaker
,
Kasopefoluwa Y.
Oguntuyo
,
Claude Kwe
Yinda
,
Helen M. E.
Duyvesteyn
,
Robert
Stass
,
Kimberly
Meade-White
,
Rebecca
Rosenke
,
Tina
Thomas
,
Neeltje
Van Doremalen
,
Greg
Saturday
,
Katie J.
Doores
,
Benhur
Lee
,
Thomas A.
Bowden
,
Vincent J.
Munster
Diamond Proposal Number(s):
[20223]
Abstract: Nipah virus (NiV) is a highly pathogenic paramyxovirus capable of causing severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, underscoring the urgent need for the development of countermeasures. The NiV surface-displayed glycoproteins, NiV-G and NiV-F, mediate host cell attachment and fusion, respectively, and are heavily targeted by host antibodies. Here, we describe a vaccination-derived neutralizing monoclonal antibody, mAb92, that targets NiV-F. Structural characterization of the Fab region bound to NiV-F (NiV-F–Fab92) by cryo-electron microscopy analysis reveals an epitope in the DIII domain at the membrane distal apex of NiV-F, an established site of vulnerability on the NiV surface. Further, prophylactic treatment of hamsters with mAb92 offered complete protection from NiV disease, demonstrating beneficial activity of mAb92 in vivo. This work provides support for targeting NiV-F in the development of vaccines and therapeutics against NiV.
|
Sep 2024
|
|
|
Helen M. E.
Duyvesteyn
,
Aiste
Dijokaite-Guraliuc
,
Chang
Liu
,
Piyada
Supasa
,
Barbara
Kronsteiner
,
Katie
Jeffery
,
Lizzie
Stafford
,
Paul
Klenerman
,
Susanna J.
Dunachie
,
Juthathip
Mongkolsapaya
,
Elizabeth
Fry
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Abstract: BA.2.87.1 represents a major shift in the BA.2 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is unusual in having two lengthy deletions of polypeptide in the spike (S) protein, one of which removes a beta-strand. Here we investigate its neutralization by a variety of sera from infected and vaccinated individuals and determine its spike (S) ectodomain structure. The BA.2.87.1 receptor binding domain (RBD) is structurally conserved and the RBDs are tightly packed in an “all-down” conformation with a small rotation relative to the trimer axis as compared to the closest previously observed conformation. The N-terminal domain (NTD) maintains a remarkably similar structure overall; however, the rearrangements resulting from the deletions essentially destroy the so-called supersite epitope and eliminate one glycan site, while a mutation creates an additional glycan site, effectively shielding another NTD epitope. BA.2.87.1 is relatively easily neutralized but acquisition of additional mutations in the RBD could increase antibody escape allowing it to become a dominant sub-lineage.
|
Aug 2024
|
|
I03-Macromolecular Crystallography
Krios II-Titan Krios II at Diamond
|
James
Hillier
,
Yuguang
Zhao
,
Loic
Carrique
,
Tomas
Malinauskas
,
Reinis R.
Ruza
,
Tao-Hsin
Chang
,
Gangshun
Yi
,
Helen M. E.
Duyvesteyn
,
Jing
Yu
,
Weixian
Lu
,
Els
Pardon
,
Jan
Steyaert
,
Yanan
Zhu
,
Tao
Ni
,
E. Yvonne
Jones
Diamond Proposal Number(s):
[19946, 28713]
Open Access
Abstract: The Wnt receptor Frizzled3 (FZD3) is important for brain axonal development and cancer progression. We report structures of FZD3 in complex with extracellular and intracellular binding nanobodies (Nb). The crystal structure of Nb8 in complex with the FZD3 cysteine-rich domain (CRD) reveals that the nanobody binds at the base of the lipid-binding groove and can compete with Wnt5a. Nb8 fused with the Dickkopf-1 C-terminal domain behaves as a FZD3-specific Wnt surrogate, activating β-catenin signalling. The cryo-EM structure of FZD3 in complex with Nb9 reveals partially resolved density for the CRD, which exhibits positional flexibility, and a transmembrane conformation that resembles active GPCRs. Nb9 binds to the cytoplasmic region of FZD3 at the putative Dishevelled (DVL) or G protein-binding site, competes with DVL binding, and inhibits GαS coupling. In combination, our FZD3 structures with nanobody modulators map extracellular and intracellular interaction surfaces of functional, and potentially therapeutic, relevance.
|
Aug 2024
|
|
I03-Macromolecular Crystallography
|
Chang
Liu
,
Daming
Zhou
,
Aiste
Dijokaite-Guraliuc
,
Piyada
Supasa
,
Helen M. E.
Duyvesteyn
,
Helen M.
Ginn
,
Muneeswaran
Selvaraj
,
Alexander J.
Mentzer
,
Raksha
Das
,
Thushan I.
De Silva
,
Thomas G.
Ritter
,
Megan
Plowright
,
Thomas A.h.
Newman
,
Lizzie
Stafford
,
Barbara
Kronsteiner
,
Nigel
Temperton
,
Yuan
Lui
,
Martin
Fellermeyer
,
Philip
Goulder
,
Paul
Klenerman
,
Susanna J.
Dunachie
,
Michael I.
Barton
,
Mikhail A.
Kutuzov
,
Omer
Dushek
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[28534, 27009]
Open Access
Abstract: BA.2.86, a recently described sublineage of SARS-CoV-2 Omicron, contains many mutations in the spike gene. It appears to have originated from BA.2 and is distinct from the XBB variants responsible for many infections in 2023. The global spread and plethora of mutations in BA.2.86 has caused concern that it may possess greater immune-evasive potential, leading to a new wave of infection. Here, we examine the ability of BA.2.86 to evade the antibody response to infection using a panel of vaccinated or naturally infected sera and find that it shows marginally less immune evasion than XBB.1.5. We locate BA.2.86 in the antigenic landscape of recent variants and look at its ability to escape panels of potent monoclonal antibodies generated against contemporary SARS-CoV-2 infections. We demonstrate, and provide a structural explanation for, increased affinity of BA.2.86 to ACE2, which may increase transmissibility.
|
May 2024
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Chang
Liu
,
Raksha
Das
,
Aiste
Dijokaite-Guraliuc
,
Daming
Zhou
,
Alexander J.
Mentzer
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Helen M. E.
Duyvesteyn
,
Thomas G.
Ritter
,
Nigel
Temperton
,
Paul
Klenerman
,
Susanna J.
Dunachie
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Open Access
Abstract: The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. Twenty eight potent antibodies are isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5, SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called ‘FLip’ mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.
|
Apr 2024
|
|
|
Daming
Zhou
,
Piyada
Supasa
,
Chang
Liu
,
Aiste
Dijokaite-Guraliuc
,
Helen M. E.
Duyvesteyn
,
Muneeswaran
Selvaraj
,
Alexander J.
Mentzer
,
Raksha
Das
,
Wanwisa
Dejnirattisai
,
Nigel
Temperton
,
Paul
Klenerman
,
Susanna J.
Dunachie
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Open Access
Abstract: Under pressure from neutralising antibodies induced by vaccination or infection the SARS-CoV-2 spike gene has become a hotspot for evolutionary change, leading to the failure of all mAbs developed for clinical use. Most potent antibodies bind to the receptor binding domain which has become heavily mutated. Here we study responses to a conserved epitope in sub-domain-1 (SD1) of spike which have become more prominent because of mutational escape from antibodies directed to the receptor binding domain. Some SD1 reactive mAbs show potent and broad neutralization of SARS-CoV-2 variants. We structurally map the dominant SD1 epitope and provide a mechanism of action by blocking interaction with ACE2. Mutations in SD1 have not been sustained to date, but one, E554K, leads to escape from mAbs. This mutation has now emerged in several sublineages including BA.2.86, reflecting selection pressure on the virus exerted by the increasing prominence of the anti-SD1 response.
|
Mar 2024
|
|
Krios I-Titan Krios I at Diamond
Krios III-Titan Krios III at Diamond
Krios IV-Titan Krios IV at Diamond
|
Tao
Ni
,
Luiza
Mendonca
,
Yanan
Zhu
,
Andrew
Howe
,
Julika
Radecke
,
Pranav M.
Shah
,
Yuewen
Sheng
,
Anna-Sophia
Krebs
,
Helen M. E.
Duyvesteyn
,
Elizabeth
Allen
,
Teresa
Lambe
,
Cameron
Bisset
,
Alexandra
Spencer
,
Susan
Morris
,
David I.
Stuart
,
Sarah
Gilbert
,
Peijun
Zhang
Diamond Proposal Number(s):
[26987]
Open Access
Abstract: Vaccines against SARS-CoV-2 have been proven to be an effective means of decreasing COVID-19 mortality, hospitalization rates, and transmission. One of the vaccines deployed worldwide is ChAdOx1 nCoV-19, which uses an adenovirus vector to drive the expression of the original SARS-CoV-2 spike on the surface of transduced cells. Using cryo-electron tomography and subtomogram averaging, we determined the native structures of the vaccine product expressed on cell surfaces in situ. We show that ChAdOx1-vectored vaccines expressing the Beta SARS-CoV-2 variant produce abundant native prefusion spikes predominantly in one-RBD-up conformation. Furthermore, the ChAdOx1 vectored HexaPro stabilized spike yields higher cell surface expression, enhanced RBD exposure, and reduced shedding of S1 compared to the wild-type. We demonstrate in situ structure determination as a powerful means for studying antigen design options in future vaccine development against emerging novel SARS-CoV-2 variants and broadly against other infectious viruses.
|
Sep 2023
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Vijil
Chenthamarakshan
,
Samuel C.
Hoffman
,
C. David
Owen
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Daren
Fearon
,
Tika R.
Malla
,
Anthony
Tumber
,
Christopher J.
Schofield
,
Helen M. E.
Duyvesteyn
,
Wanwisa
Dejnirattisai
,
Loic
Carrique
,
Thomas S.
Walter
,
Gavin R.
Screaton
,
Tetiana
Matviiuk
,
Aleksandra
Mojsilovic
,
Jason
Crain
,
Martin A.
Walsh
,
David I.
Stuart
,
Payel
Das
Diamond Proposal Number(s):
[27995]
Open Access
Abstract: Inhibitor discovery for emerging drug-target proteins is challenging, especially when target structure or active molecules are unknown. Here, we experimentally validate the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions—unbiased toward any specific target. We performed a protein sequence-conditioned sampling on the generative foundation model to design small-molecule inhibitors for two dissimilar targets: the spike protein receptor-binding domain (RBD) and the main protease from SARS-CoV-2. Despite using only the target sequence information during the model inference, micromolar-level inhibition was observed in vitro for two candidates out of four synthesized for each target. The most potent spike RBD inhibitor exhibited activity against several variants in live virus neutralization assays. These results establish that a single, broadly deployable generative foundation model for accelerated inhibitor discovery is effective and efficient, even in the absence of target structure or binder information.
|
Jun 2023
|
|
I03-Macromolecular Crystallography
|
Aiste
Dijokaite-Guraliuc
,
Raksha
Das
,
Daming
Zhou
,
Helen M.
Ginn
,
Chang
Liu
,
Helen M. E.
Duyvesteyn
,
Jiandong
Huo
,
Rungtiwa
Nutalai
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Thushan I.
De Silva
,
Megan
Plowright
,
Thomas A. H.
Newman
,
Hailey
Hornsby
,
Alexander J.
Mentzer
,
Donal
Skelly
,
Thomas G.
Ritter
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Cornelius
Roemer
,
Thomas P.
Peacock
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: In November 2021 Omicron BA.1, containing a raft of new spike mutations emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or SARS-CoV-2 infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional RBD amino-acid substitutions compared to BA.2. We describe a panel of 25 potent mAbs generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titre of vaccine or BA.1, BA.2 or BA.4/5 immune serum.
|
Mar 2023
|
|