I06-Nanoscience (XPEEM)
|
Yang
Li
,
Yan
Wang
,
Andrew F.
May
,
Mauro
Fianchini
,
Chiara
Biz
,
Saeyoung
Oh
,
Yiru
Zhu
,
Hu Young
Jeong
,
Jieun
Yang
,
Jose
Gracia
,
Manish
Chhowalla
Diamond Proposal Number(s):
[33245]
Open Access
Abstract: Spin selective catalysis is an emerging approach for improving the thermodynamics and kinetics of reactions. The role of electron spins has been scarcely studied in catalytic reactions. One exception is the oxygen evolution reaction (OER) where strongly correlated metals and oxides are used as catalysts. In OER, spin alignment facilitates the transition of singlet state of the reactant to the triplet state of O2. However, the influence of strong correlations on spin exchange mechanism and spin selective thermodynamics of most catalytic reactions remain unclear. Here we decouple the strongly correlated catalyst from the electrolyte to study spin exchange in two-dimensional (2D) magnetic iron germanium telluride (FGT) heterostructure. We demonstrate that transmission of spin and electrochemical information between the catalyst and the reactant can occur through quantum exchange interaction despite the catalyst of FGT being completely encapsulated by graphene or hexagonal boron nitride (hBN). The strong correlations in FGT that lead to enhanced spin exchange in OER are observed in graphene or hBN layers with thicknesses of up to 6 nm. We demonstrate that spin alignment in FGT leads to a lowering of thermodynamic barrier for adsorption of hydroxide ion and electron transfer to the catalyst. This results in up to fivefold enhancement in OER performance and improved kinetics. Our results provide clear evidence that transmission of both quantum mechanical and electrochemical information through quantum spin exchange interaction in FGT leads to an enhancement in catalytic performance.
|
Dec 2024
|
|
I13-2-Diamond Manchester Imaging
I14-Hard X-ray Nanoprobe
|
Kamila
Iskhakova
,
Hanna
Cwieka
,
Svenja
Meers
,
Heike
Helmholz
,
Anton
Davydok
,
Malte
Storm
,
Ivo Matteo
Baltruschat
,
Silvia
Galli
,
Daniel
Pröfrock
,
Olga
Will
,
Mirko
Gerle
,
Timo
Damm
,
Sandra
Sefa
,
Weilue
He
,
Keith
Macrenaris
,
Malte
Soujon
,
Felix
Beckmann
,
Julian
Moosmann
,
Thomas
O'Hallaran
,
Roger J.
Guillory
,
D. C. Florian
Wieland
,
Berit
Zeller-Plumhoff
,
Regine
Willumeit-Römer
Diamond Proposal Number(s):
[25078]
Open Access
Abstract: Magnesium (Mg) – based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing, e.g. as a suture anchor. Due to their mechanical properties and biocompatibility, they may replace titanium or stainless-steel implants, commonly used in orthopedic field. Nevertheless, patient safety has to be assured by finding a long-term balance between metal degradation, osseointegration, bone ultrastructure adaptation and element distribution in organs. In order to determine the implant behavior and its influence on bone and tissues, we investigated two Mg alloys with gadolinium contents of 5 and 10 wt percent in comparison to permanent materials titanium and polyether ether ketone. The implants were present in rat tibia for 10, 20 and 32 weeks before sacrifice of the animal. Synchrotron radiation-based micro computed tomography enables the distinction of features like residual metal, degradation layer and bone structure. Additionally, X-ray diffraction and X-ray fluorescence yield information on parameters describing the bone ultrastructure and elemental composition at the bone-to-implant interface. Finally, with element specific mass spectrometry, the elements and their accumulation in the main organs and tissues are traced. The results show that Mg-xGd implants degrade in vivo under the formation of a stable degradation layer with bone remodeling similar to that of Ti after 10 weeks. No accumulation of Mg and Gd was observed in selected organs, except for the interfacial bone after 8 months of healing. Thus, we confirm that Mg-5Gd and Mg-10Gd are suitable material choices for bone implants.
|
Nov 2024
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[33049]
Open Access
Abstract: Increasing municipal solid waste (MSW) production poses challenges for sustainable urban development. Modern energy-from-waste (EfW) facilities incinerate MSW, reducing mass and recovering energy. In the UK, MSW incineration bottom ash (MSW IBA) is primarily reused in civil engineering applications. This study characterizes UK-produced MSW IBA, examining its pH-dependent leaching behaviour and response to environmental lixiviants. Results show predominant components include a melt phase, primary glass and fine ash aggregations, and a chemical composition dominated by SiO2 (30–50 %), CaO (∼15 %), Fe2O3 (∼10 %), and Al2O3 (∼8%). X-ray absorption near edge structure (XANES) analysis shows that Zn and Cu are most likely oxygen-bound (adsorbed to oxy-hydroxides and as oxides) with some sulphur bound. Polychlorinated biphenyls (PCBs) and polychlorinated dibenzodioxins/furans (PCDD/Fs) are well below regulatory limits, and polycyclic aromatic hydrocarbons (PAHs) were undetectable. Leaching tests indicate trace elements mobilize at pHs ≤ 6. With a natural pH of 11.3 and high buffering capacity, significant acid inputs to the MSW IBA are required to reach this pH, which are improbable in the environment. Wood chip additions increase leachate’s dissolved organic carbon (DOC) and reduce pH, but had minimal impact on metal-leaching behaviour. Synthetic plant exudate solutions minimally affect metal leaching at realistic concentrations, only enhancing leaching at ≥ 1500 mg l−1 DOC. This work supports MSW IBA’s low-risk in specified civil engineering applications.
|
Oct 2024
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[33825]
Abstract: Septins are cytoskeletal proteins and their interaction with membranes is crucial for their role in various cellular processes. Septins have polybasic regions (PB1 and PB2) which are important for lipid interaction. Earlier, we and others have highlighted the role of the septin C-terminal domain (CTD) to membrane interaction. However, detailed information on residues/group of residues important for such feature is lacking. In this study, we investigate the lipid-binding profile of Schistosoma mansoni Septin10 (SmSEPT10) using PIP strip and Langmuir monolayer adsorption assays. Our findings highlight the CTD as the primary domain responsible for lipid interaction in SmSEPT10, showing binding to phosphatidylinositol phosphates. SmSEPT10 CTD contains a conserved polybasic region (PB3) present in both animals and fungi septins, and a Lys (K367) within its putative amphipathic helix (AH) that we demonstrate as important for lipid binding. PB3 deletion or mutation of this Lys (K367A) strongly impairs lipid interaction. Remarkably, we observe that the AH within a construct lacking the final 43 amino acid residues is insufficient for lipid binding. Furthermore, we investigate the homocomplex formed by SmSEPT10 CTD in solution by cross-linking experiments, CD spectroscopy, SEC-MALS and SEC-SAXS. Taken together, our studies define the lipid-binding region in SmSEPT10 and offer insights into the molecular basis of septin-membrane binding. This information is particularly relevant for less-studied non-human septins, such as SmSEPT10.
|
Oct 2024
|
|
|
Open Access
Abstract: Short range order of a ternary Mg82Ca8Au10 biodegradable amorphous alloy was studied by combining diffraction datasets and Au L3 edge EXAFS data by the Reverse Monte Carlo simulation technique. It was found that while the Mg–Mg bond length agrees well with the empirical atomic diameter of Mg, both the Mg–Ca and Mg–Au mean interatomic distances are ∼9 % shorter than the sum of the corresponding atomic radii. The Ca–Au bond length exhibits ∼14 % shortening. The linear expansion coefficients of the glass determined from the temperature induced shift of the first peak of the structure factor and the reduced pair distribution function are ∼3.7 × 10−5 K−1 and ∼3.1 × 10−5 K−1, respectively. During devitrification, two crystalline phases emerge from the amorphous alloy: hexagonal AuMg3 and the solid solution of Ca in hexagonal close packed Mg. The thermal expansion behaviour of the AuMg3 unit cell was also determined using diffraction data.
|
Oct 2024
|
|
|
Open Access
Abstract: Over the last three decades, the technology that makes it possible to follow chemical processes in the solid state in real time has grown enormously. These studies have important implications for the design of new functional materials for applications in optoelectronics and sensors. Light–matter interactions are of particular importance, and photocrystallography has proved to be an important tool for studying these interactions. In this technique, the three-dimensional structures of light-activated molecules, in their excited states, are determined using single-crystal X-ray crystallography. With advances in the design of high-power lasers, pulsed LEDs and time-gated X-ray detectors, the increased availability of synchrotron facilities, and most recently, the development of XFELs, it is now possible to determine the structures of molecules with lifetimes ranging from minutes down to picoseconds, within a single crystal, using the photocrystallographic technique. This review discusses the procedures for conducting successful photocrystallographic studies and outlines the different methodologies that have been developed to study structures with specific lifetime ranges. The complexity of the methods required increases considerably as the lifetime of the excited state shortens. The discussion is supported by examples of successful photocrystallographic studies across a range of timescales and emphasises the importance of the use of complementary analytical techniques in order to understand the solid-state processes fully.
|
Oct 2024
|
|
I23-Long wavelength MX
|
Open Access
Abstract: AlphaFold2 has revolutionized structural biology by offering unparalleled accuracy in predicting protein structures. Traditional methods for determining protein structures, such as X-ray crystallography and cryo-electron microscopy, are often time-consuming and resource-intensive. AlphaFold2 provides models that are valuable for molecular replacement, aiding in model building and docking into electron density or potential maps. However, despite its capabilities, models from AlphaFold2 do not consistently match the accuracy of experimentally determined structures, need to be validated experimentally and currently miss some crucial information, such as post-translational modifications, ligands and bound ions. In this paper, the advantages are explored of collecting X-ray anomalous data to identify chemical elements, such as metal ions, which are key to understanding certain structures and functions of proteins. This is achieved through methods such as calculating anomalous difference Fourier maps or refining the imaginary component of the anomalous scattering factor f′′. Anomalous data can serve as a valuable complement to the information provided by AlphaFold2 models and this is particularly significant in elucidating the roles of metal ions.
|
Oct 2024
|
|
I09-Surface and Interface Structural Analysis
|
Pablo
Vezzoni Vicente
,
Tobias
Weiss
,
Dennis
Meier
,
Wenchao
Zhao
,
Birce Sena
Tömekçe
,
Marc
G. Cuxart
,
Benedikt P.
Klein
,
David A.
Duncan
,
Tien-Lin
Lee
,
Anthoula C.
Papageorgiou
,
Matthias
Muntwiler
,
Ari Paavo
Seitsonen
,
Willi
Auwärter
,
Peter
Feulner
,
Johannes V.
Barth
,
Francesco
Allegretti
Diamond Proposal Number(s):
[25907]
Abstract: In light of the recent research interest in low-dimensional bismuth structures as spin-active materials and topological insulators, we present a comprehensive characterization of the Bi/Au(111) interface. The nuanced evolution of Bi phases upon deposition in ultrahigh vacuum (UHV) on a Au(111) surface is investigated from semidisordered clusters to few-layer Bi(110) thin films. Particular attention is devoted to the high-coverage, submonolayer phases, commonly grouped under the (𝑃×√3) nomenclature. We bring forth a new model, refining the current understanding of the Bi/Au(111) interface and demonstrating the existence of submonolayer moiré superstructures, whose geometry and superperiodicity depend on their coverage. This tuneable periodicity paves the way for their use as tailored buffer and templating layers for epitaxial growth of thin films on Au(111). Finally, we clarify the growth mode of multilayer Bi(110) as bilayer-by-bilayer, allowing precise thickness control of anisotropically strained thin films. This holistic understanding of the structural properties of the material was enabled by the synergy of several experimental techniques, namely low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy and spectroscopy (STM, STS), and x-ray standing waves (XSW), further corroborated by density functional theory (DFT) simulations.
|
Oct 2024
|
|
|
Mingyuan
Ye
,
Ziqi
Zhao
,
Liying
Liu
,
Li
Shao
,
Li
Liu
,
Xiaorui
Hao
,
Jiaqi
Lv
,
Peng-Fei
Wang
,
Yu-Han
Zhang
,
Fa-Nian
Shi
,
Yuhan
Wu
Abstract: In this work, Cu1.04Mn0.96O2 nanosheets were synthesized via a simple hydrothermal method, and their electrochemical lithium storage properties and reaction mechanisms were investigated. The nanosheet structure effectively promotes electron transfer and shortens the transport path. Additionally, the partial substitution of Cu for Mn decreases the Jahn-Teller distortion of the MnO6 octahedron. Employing as an anode for Li-ion batteries, the specific capacity reached 610.91 mAh g−1 after 100 cycles at a current density of 100 mA g−1.
|
Oct 2024
|
|
I03-Macromolecular Crystallography
|
Yu
Liu
,
Ganka
Bineva-Todd
,
Richard W.
Meek
,
Laura
Mazo
,
Beatriz
Piniello
,
Olga
Moroz
,
Sean A.
Burnap
,
Nadima
Begum
,
André
Ohara
,
Chloe
Roustan
,
Sara
Tomita
,
Svend
Kjaer
,
Karen
Polizzi
,
Weston B.
Struwe
,
Carme
Rovira
,
Gideon J.
Davies
,
Benjamin
Schumann
Diamond Proposal Number(s):
[32736]
Open Access
Abstract: Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar N-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme–substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.
|
Oct 2024
|
|