B21-High Throughput SAXS
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[31229]
Abstract: Septins are membrane-associated, GTP-binding proteins that are present in most eukaryotes. They polymerize to play important roles as scaffolds and/or diffusion barriers as part of the cytoskeleton. α-Helical coiled-coil domains are believed to contribute to septin assembly, and those observed in both human SEPT6 and SEPT8 form antiparallel homodimers. These are not compatible with their parallel heterodimeric organization expected from the current model for protofilament assembly, but they could explain the interfilament cross-bridges observed by microscopy. Here, the first structure of a heterodimeric septin coiled coil is presented, that between SEPT14 and SEPT7; the former is a SEPT6/SEPT8 homolog. This new structure is parallel, with two long helices that are axially shifted by a full helical turn with reference to their sequence alignment. The structure also has unusual knobs-into-holes packing of side chains. Both standard seven-residue (heptad) and the less common 11-residue (hendecad) repeats are present, creating two distinct regions with opposite supercoiling, which gives rise to an overall straight coiled coil. Part of the hendecad region is required for heterodimerization and therefore may be crucial for selective septin recognition. These unconventional sequences and structural features produce a metastable heterocomplex that nonetheless has enough specificity to promote correct protofilament assembly. For instance, the lack of supercoiling may facilitate unzipping and transitioning to the antiparallel homodimeric state.
|
Oct 2023
|
|
I24-Microfocus Macromolecular Crystallography
|
Open Access
Abstract: The aTfaRel2/faRel2 operon from Coprobacillus sp. D7 encodes a bicistronic type II toxin–antitoxin (TA) module. The FaRel2 toxin is a toxic small alarmone synthetase (toxSAS) that inhibits translation through the pyrophosphorylation of uncharged tRNAs at the 3′-CCA end. The toxin is neutralized by the antitoxin ATfaRel2 through the formation of an inactive TA complex. Here, the production, biophysical analysis and crystallization of ATfaRel2 and FaRel2 as well as of the ATfaRel2–FaRel2 complex are reported. ATfaRel2 is monomeric in solution. The antitoxin crystallized in space group P21212 with unit-cell parameters a = 53.3, b = 34.2, c = 37.6 Å, and the best crystal diffracted to a resolution of 1.24 Å. Crystals of FaRel2 in complex with APCPP, a nonhydrolysable ATP analogue, belonged to space group P21, with unit-cell parameters a = 31.5, b = 60.6, c = 177.2 Å, β = 90.6°, and diffracted to 2.6 Å resolution. The ATfaRel2–FaRel2Y128F complex forms a heterotetramer in solution composed of two toxins and two antitoxins. This complex crystallized in two space groups: F4132, with unit-cell parameters a = b = c = 227.1 Å, and P212121, with unit-cell parameters a = 51.7, b = 106.2, c = 135.1 Å. The crystals diffracted to 1.98 and 2.1 Å resolution, respectively.
|
Oct 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9948]
Open Access
Abstract: The NADPH-dependent imine reductase from Ajellomyces dermatitidis (AdRedAm) catalyzes the reductive amination of certain ketones with amine donors supplied in an equimolar ratio. The structure of AdRedAm has been determined in three forms. The first form, which belongs to space group P3121 and was refined to 2.01 Å resolution, features two molecules (one dimer) in the asymmetric unit in complex with the redox-inactive cofactor NADPH4. The second form, which belongs to space group C21 and was refined to 1.73 Å resolution, has nine molecules (four and a half dimers) in the asymmetric unit, each complexed with NADP+. The third form, which belongs to space group P3121 and was refined to 1.52 Å resolution, has one molecule (one half-dimer) in the asymmetric unit. This structure was again complexed with NADP+ and also with the substrate 2,2-difluoroacetophenone. The different data sets permit the analysis of AdRedAm in different conformational states and also reveal the molecular basis of stereoselectivity in the transformation of fluorinated acetophenone substrates by the enzyme.
|
Sep 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Olga
Moroz
,
Elena
Blagova
,
Andrey A.
Lebedev
,
Lars K.
Skov
,
Roland A.
Pache
,
Kirk M.
Schnorr
,
Lars
Kiemer
,
Esben P.
Friis
,
Søren
Nymand-Grarup
,
Li
Ming
,
Liu
Ye
,
Mikkel
Klausen
,
Marianne T.
Cohn
,
Esben G. W.
Schmidt
,
Gideon J.
Davies
,
Keith S.
Wilson
Diamond Proposal Number(s):
[7864, 13587, 24948]
Open Access
Abstract: Muramidases (also known as lysozymes) hydrolyse the peptidoglycan component of the bacterial cell wall and are found in many glycoside hydrolase (GH) families. Similar to other glycoside hydrolases, muramidases sometimes have noncatalytic domains that facilitate their interaction with the substrate. Here, the identification, characterization and X-ray structure of a novel fungal GH24 muramidase from Trichophaea saccata is first described, in which an SH3-like cell-wall-binding domain (CWBD) was identified by structure comparison in addition to its catalytic domain. Further, a complex between a triglycine peptide and the CWBD from T. saccata is presented that shows a possible anchor point of the peptidoglycan on the CWBD. A `domain-walking' approach, searching for other sequences with a domain of unknown function appended to the CWBD, was then used to identify a group of fungal muramidases that also contain homologous SH3-like cell-wall-binding modules, the catalytic domains of which define a new GH family. The properties of some representative members of this family are described as well as X-ray structures of the independent catalytic and SH3-like domains of the Kionochaeta sp., Thermothielavioides terrestris and Penicillium virgatum enzymes. This work confirms the power of the module-walking approach, extends the library of known GH families and adds a new noncatalytic module to the muramidase arsenal.
|
Aug 2023
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598, 24948]
Open Access
Abstract: Siderophore-binding proteins from two thermophilic bacteria, Geobacillus stearothermophilus and Parageobacillus thermoglucosidasius, were identified from a search of sequence databases, cloned and overexpressed. They are homologues of the well characterized protein CjCeuE from Campylobacter jejuni. The iron-binding histidine and tyrosine residues are conserved in both thermophiles. Crystal structures were determined of the apo proteins and of their complexes with iron(III)-azotochelin and its analogue iron(III)-5-LICAM. The thermostability of both homologues was shown to be about 20°C higher than that of CjCeuE. Similarly, the tolerance of the homologues to the organic solvent dimethylformamide (DMF) was enhanced, as reflected by the respective binding constants for these ligands measured in aqueous buffer at pH 7.5 in the absence and presence of 10% and 20% DMF. Consequently, these thermophilic homologues offer advantages in the development of artificial metalloenzymes using the CeuE family.
|
Aug 2023
|
|
|
Open Access
Abstract: Fixed-target crystallography has become a widely used approach for serial crystallography at both synchrotron and X-ray free-electron laser (XFEL) sources. A plethora of fixed targets have been developed at different facilities and by various manufacturers, with different characteristics and dimensions and with little or no emphasis on standardization. These many fixed targets have good reasons for their design, shapes, fabrication materials and the presence or absence of apertures and fiducials, reflecting the diversity of serial experiments. Given this, it would be a Sisyphean task to design and manufacture a new standard fixed target that would satisfy all possible experimental configurations. Therefore, a simple standardized descriptor to fully describe fixed targets is proposed rather than a standardized device. This descriptor is a dictionary that could be read by fixed-target beamline software and straightforwardly allow data collection from fixed targets new to that beamline. The descriptor would therefore allow a much easier exchange of fixed targets between sources and facilitate the uptake of new fixed targets, benefiting beamlines, users and manufacturers. This descriptor was first presented at, and was developed following, a meeting of representatives from multiple synchrotron and XFEL sources in Hamburg in January 2023.
|
Aug 2023
|
|
I04-Macromolecular Crystallography
|
Open Access
Abstract: Candida auris has emerged as a global health problem with a dramatic spread by nosocomial transmission and a high mortality rate. Antifungal therapy for C. auris infections is currently limited due to widespread resistance to fluconazole and amphotericin B and increasing resistance to the front-line drug echinocandin. Therefore, new treatments are urgently required to combat this pathogen. Dihydrofolate reductase (DHFR) has been validated as a potential drug target for Candida species, although no structure of the C. auris enzyme (CauDHFR) has been reported. Here, crystal structures of CauDHFR are reported as an apoenzyme, as a holoenzyme and in two ternary complexes with pyrimethamine and cycloguanil, which are common antifolates, at near-atomic resolution. Preliminary biochemical and biophysical assays and antifungal susceptibility testing with a variety of classical antifolates were also performed, highlighting the enzyme-inhibition rates and the inhibition of yeast growth. These structural and functional data might provide the basis for a novel drug-discovery campaign against this global threat.
|
Aug 2023
|
|
|
Jon
Agirre
,
Mihaela
Atanasova
,
Haroldas
Bagdonas
,
Charles B.
Ballard
,
Arnaud
Basle
,
James
Beilsten-Edmands
,
Rafael J.
Borges
,
David G.
Brown
,
J. Javier
Burgos-Marmol
,
John M.
Berrisford
,
Paul S.
Bond
,
Iracema
Caballero
,
Lucrezia
Catapano
,
Grzegorz
Chojnowski
,
Atlanta G.
Cook
,
Kevin D.
Cowtan
,
Tristan I.
Croll
,
Judit É.
Debreczeni
,
Nicholas E.
Devenish
,
Eleanor J.
Dodson
,
Tarik R.
Drevon
,
Paul
Emsley
,
Gwyndaf
Evans
,
Phil R.
Evans
,
Maria
Fando
,
James
Foadi
,
Luis
Fuentes-Montero
,
Elspeth F.
Garman
,
Markus
Gerstel
,
Richard J.
Gildea
,
Kaushik
Hatti
,
Maarten L.
Hekkelman
,
Philipp
Heuser
,
Soon Wen
Hoh
,
Michael A.
Hough
,
Huw T.
Jenkins
,
Elisabet
Jiménez
,
Robbie P.
Joosten
,
Ronan M.
Keegan
,
Nicholas
Keep
,
Eugene B.
Krissinel
,
Petr
Kolenko
,
Oleg
Kovalevskiy
,
Victor S.
Lamzin
,
David M.
Lawson
,
Andrey
Lebedev
,
Andrew G. W.
Leslie
,
Bernhard
Lohkamp
,
Fei
Long
,
Martin
Maly
,
Airlie
Mccoy
,
Stuart J.
Mcnicholas
,
Ana
Medina
,
Claudia
Millán
,
James W.
Murray
,
Garib N.
Murshudov
,
Robert A.
Nicholls
,
Martin E. M.
Noble
,
Robert
Oeffner
,
Navraj S.
Pannu
,
James M.
Parkhurst
,
Nicholas
Pearce
,
Joana
Pereira
,
Anastassis
Perrakis
,
Harold R.
Powell
,
Randy J.
Read
,
Daniel J.
Rigden
,
William
Rochira
,
Massimo
Sammito
,
Filomeno
Sanchez Rodriguez
,
George M.
Sheldrick
,
Kathryn L.
Shelley
,
Felix
Simkovic
,
Adam J.
Simpkin
,
Pavol
Skubak
,
Egor
Sobolev
,
Roberto A.
Steiner
,
Kyle
Stevenson
,
Ivo
Tews
,
Jens M. H.
Thomas
,
Andrea
Thorn
,
Josep Triviño
Valls
,
Ville
Uski
,
Isabel
Uson
,
Alexei
Vagin
,
Sameer
Velankar
,
Melanie
Vollmar
,
Helen
Walden
,
David
Waterman
,
Keith S.
Wilson
,
Martyn
Winn
,
Graeme
Winter
,
Marcin
Wojdyr
,
Keitaro
Yamashita
Open Access
Abstract: The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
|
Jun 2023
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[24948]
Open Access
Abstract: Chagas disease is a neglected tropical disease (NTD) caused by Trypanosoma cruzi, whilst leishmaniasis, which is caused by over 20 species of Leishmania, represents a group of NTDs endemic to most countries in the tropical and subtropical belt of the planet. These diseases remain a significant health problem both in endemic countries and globally. These parasites and other trypanosomatids, including T. theileri, a bovine pathogen, rely on cysteine biosynthesis for the production of trypanothione, which is essential for parasite survival in hosts. The de novo pathway of cysteine biosynthesis requires the conversion of O-acetyl-L-serine into L-cysteine, which is catalysed by cysteine synthase (CS). These enzymes present potential for drug development against T. cruzi, Leishmania spp. and T. theileri. To enable these possibilities, biochemical and crystallographic studies of CS from T. cruzi (TcCS), L. infantum (LiCS) and T. theileri (TthCS) were conducted. Crystal structures of the three enzymes were determined at resolutions of 1.80 Å for TcCS, 1.75 Å for LiCS and 2.75 Å for TthCS. These three homodimeric structures show the same overall fold and demonstrate that the active-site geometry is conserved, supporting a common reaction mechanism. Detailed structural analysis revealed reaction intermediates of the de novo pathway ranging from an apo structure of LiCS and holo structures of both TcCS and TthCS to the substrate-bound structure of TcCS. These structures will allow exploration of the active site for the design of novel inhibitors. Additionally, unexpected binding sites discovered at the dimer interface represent new potential for the development of protein–protein inhibitors.
|
Jun 2023
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs). To date, neither the function nor the structure of a multi-domain GH92 α-mannosidase CBM has been characterized. Here, the biochemical investigation and crystal structure of the full-length five-domain GH92 α-1,2-mannosidase from Neobacillus novalis (NnGH92) with mannoimidazole bound in the active site and an additional mannoimidazole bound to the N-terminal CBM32 are reported. The structure of the catalytic domain is very similar to that reported for the GH92 α-mannosidase Bt3990 from Bacteroides thetaiotaomicron, with the substrate-binding site being highly conserved. The function of the CBM32s and other NnGH92 domains was investigated by their sequential deletion and suggested that whilst their binding to the catalytic domain was crucial for the overall structural integrity of the enzyme, they appear to have little impact on the binding affinity to the yeast α-mannan substrate. These new findings provide a better understanding of how to select and optimize other multi-domain bacterial GH92 α-mannosidases for the degradation of yeast α-mannan or mannose-rich glycans.
|
May 2023
|
|