E02-JEM ARM 300CF
|
Haobo
Dong
,
Ruirui
Liu
,
Xueying
Hu
,
Fangjia
Zhao
,
Liqun
Kang
,
Longxiang
Liu
,
Jianwei
Li
,
Yeshu
Tan
,
Yongquan
Zhou
,
Dan J. L.
Brett
,
Guanjie
He
,
Ivan
Parkin
Diamond Proposal Number(s):
[30614, 29809]
Open Access
Abstract: A stable cathode–electrolyte interface (CEI) is crucial for aqueous zinc-ion batteries (AZIBs), but it is less investigated. Commercial binder poly(vinylidene fluoride) (PVDF) is widely used without scrutinizing its suitability and cathode-electrolyte interface (CEI) in AZIBs. A water-soluble binder is developed that facilitated the in situ formation of a CEI protecting layer tuning the interfacial morphology. By combining a polysaccharide sodium alginate (SA) with a hydrophobic polytetrafluoroethylene (PTFE), the surface morphology, and charge storage kinetics can be confined from diffusion-dominated to capacitance-controlled processes. The underpinning mechanism investigates experimentally in both kinetic and thermodynamic perspectives demonstrate that the COO− from SA acts as an anionic polyelectrolyte facilitating the adsorption of Zn2+; meanwhile fluoride atoms on PTFE backbone provide hydrophobicity to break desolvation penalty. The hybrid binder is beneficial in providing a higher areal flux of Zn2+ at the CEI, where the Zn-Birnessite MnO2 battery with the hybrid binder exhibits an average specific capacity 45.6% higher than that with conventional PVDF binders; moreover, a reduced interface activation energy attained fosters a superior rate capability and a capacity retention of 99.1% in 1000 cycles. The hybrid binder also reduces the cost compared to the PVDF/NMP, which is a universal strategy to modify interface morphology.
|
Dec 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[16214]
Open Access
Abstract: Laser powder bed fusion (LPBF) can produce high-value metallic components for many industries; however, its adoption for safety-critical applications is hampered by the presence of imperfections. The interdependency between imperfections and processing parameters remains unclear. Here, the evolution of porosity and humps during LPBF using X-ray and electron imaging, and a high-fidelity multiphase process simulation, is quantified. The pore and keyhole formation mechanisms are driven by the mixing of high temperatures and high metal vapor concentrations in the keyhole is revealed. The irregular pores are formed via keyhole collapse, pore coalescence, and then pore entrapment by the solidification front. The mixing of the fast-moving vapor plume and molten pool induces a Kelvin–Helmholtz instability at the melt track surface, forming humps. X-ray imaging and a high-fidelity model are used to quantify the pore evolution kinetics, pore size distribution, waviness, surface roughness, and melt volume under single layer conditions. This work provides insights on key criteria that govern the formation of imperfections in LPBF and suggest ways to improve process reliability.
|
Oct 2022
|
|
I14-Hard X-ray Nanoprobe
|
Yeseul
Park
,
Zohar
Eyal
,
Péter
Pekker
,
Daniel M.
Chevrier
,
Christopher T.
Lefèvre
,
Pascal
Arnoux
,
Jean
Armengaud
,
Caroline L.
Monteil
,
Assaf
Gal
,
Mihály
Pósfai
,
Damien
Faivre
Diamond Proposal Number(s):
[23693]
Open Access
Abstract: Metal sulfides are a common group of extracellular bacterial biominerals. However, only a few cases of intracellular biomineralization are reported in this group, mostly limited to greigite (Fe3S4) in magnetotactic bacteria. Here, a previously unknown periplasmic biomineralization of copper sulfide produced by the magnetotactic bacterium Desulfamplus magnetovallimortis strain BW-1, a species known to mineralize greigite (Fe3S4) and magnetite (Fe3O4) in the cytoplasm is reported. BW-1 produces hundreds of spherical nanoparticles, composed of 1–2 nm substructures of a poorly crystalline hexagonal copper sulfide structure that remains in a thermodynamically unstable state. The particles appear to be surrounded by an organic matrix as found from staining and electron microscopy inspection. Differential proteomics suggests that periplasmic proteins, such as a DegP-like protein and a heavy metal-binding protein, could be involved in this biomineralization process. The unexpected periplasmic formation of copper sulfide nanoparticles in BW-1 reveals previously unknown possibilities for intracellular biomineralization that involves intriguing biological control and holds promise for biological metal recovery in times of copper shortage.
|
Aug 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Chun
Huang
,
Matthew
Wilson
,
Kosuke
Suzuki
,
Enzo
Liotti
,
Thomas
Connolley
,
Oxana
Magdysyuk
,
Stephen
Collins
,
Frederic
Van Assche
,
Matthieu N
Boone
,
Matthew C.
Veale
,
Andrew
Lui
,
Rhian-Mair
Wheater
,
Chu Lun Alex
Leung
Diamond Proposal Number(s):
[23400]
Open Access
Abstract: The performance of Li+ ion batteries (LIBs) is hindered by steep Li+ ion concentration gradients in the electrodes. Although thick electrodes (≥300 µm) have the potential for reducing the proportion of inactive components inside LIBs and increasing battery energy density, the Li+ ion concentration gradient problem is exacerbated. Most understanding of Li+ ion diffusion in the electrodes is based on computational modeling because of the low atomic number (Z) of Li. There are few experimental methods to visualize Li+ ion concentration distribution of the electrode within a battery of typical configurations, for example, coin cells with stainless steel casing. Here, for the first time, an interrupted in situ correlative imaging technique is developed, combining novel, full-field X-ray Compton scattering imaging with X-ray computed tomography that allows 3D pixel-by-pixel mapping of both Li+ stoichiometry and electrode microstructure of a LiNi0.8Mn0.1Co0.1O2 cathode to correlate the chemical and physical properties of the electrode inside a working coin cell battery. An electrode microstructure containing vertically oriented pore arrays and a density gradient is fabricated. It is shown how the designed electrode microstructure improves Li+ ion diffusivity, homogenizes Li+ ion concentration through the ultra-thick electrode (1 mm), and improves utilization of electrode active materials.
|
Apr 2022
|
|
I09-Surface and Interface Structural Analysis
|
Jueli
Shi
,
Ethan A.
Rubinstein
,
Weiwei
Li
,
Jiaye
Zhang
,
Ye
Yang
,
Tien-Lin
Lee
,
Changdong
Qin
,
Pengfei
Yan
,
Judith L.
Macmanus-Driscoll
,
David O.
Scanlon
,
Kelvin H.l.
Zhang
Diamond Proposal Number(s):
[24219]
Open Access
Abstract: Oxide semiconductors are key materials in many technologies from flat-panel displays,solar cells to transparent electronics. However, many potential applications are hindered by the lack of high mobility p-type oxide semiconductors due to the localized O-2p derived valence band (VB) structure. In this work, the VB structure modulation is reported for perovskite Ba2BiMO6 (M = Bi, Nb, Ta) via the Bi 6s2 lone pair state to achieve p-type oxide semiconductors with high hole mobility up to 21 cm2 V−1 s−1, and optical bandgaps widely varying from 1.5 to 3.2 eV. Pulsed laser deposition is used to grow high quality epitaxial thin films. Synergistic combination of hard x-ray photoemission, x-ray absorption spectroscopies, and density functional theory calculations are used to gain insight into the electronic structure of Ba2BiMO6. The high mobility is attributed to the highly dispersive VB edges contributed from the strong coupling of Bi 6s with O 2p at the top of VB that lead to low hole effective masses (0.4–0.7 me). Large variation in bandgaps results from the change in the energy positions of unoccupied Bi 6s orbital or Nb/Ta d orbitals that form the bottom of conduction band. P–N junction diode constructed with p-type Ba2BiTaO6 and n-type Nb doped SrTiO3 exhibits high rectifying ratio of 1.3 × 104 at ±3 V, showing great potential in fabricating high-quality devices. This work provides deep insight into the electronic structure of Bi3+ based perovskites and guides the development of new p-type oxide semiconductors.
|
Jan 2022
|
|
Krios I-Titan Krios I at Diamond
Krios IV-Titan Krios IV at Diamond
|
Diamond Proposal Number(s):
[19865]
Open Access
Abstract: Transcription activator RamA is linked to multidrug resistance of Klebsiella pneumoniae through controlling genes that encode efflux pumps (acrA) and porin-regulating antisense RNA (micF). In bacteria, σ70, together with activators, controls the majority of genes by recruiting RNA polymerase (RNAP) to the promoter regions. RNAP and σ70 form a holoenzyme that recognizes -35 and -10 promoter DNA consensus sites. Many activators bind upstream from the holoenzyme and can be broadly divided into two classes. RamA acts as a class I activator on acrA and class II activator on micF, respectively. The authors present biochemical and structural data on RamA in complex with RNAP-σ70 at the two promoters and the data reveal the molecular basis for how RamA assembles and interacts with core RNAP and activates transcription that contributes to antibiotic resistance. Further, comparing with CAP/TAP complexes reveals common and activator-specific features in activator binding and uncovers distinct roles of the two C-terminal domains of RNAP α subunit.
|
Nov 2021
|
|
I02-Macromolecular Crystallography
|
Jacob R.
Pope
,
Rachel L.
Johnson
,
W. David
Jamieson
,
Harley L.
Worthy
,
Senthilkumar
Kailasam
,
Rochelle D.
Ahmed
,
Ismail
Taban
,
Husam Sabah
Auhim
,
Daniel W.
Watkins
,
Pierre J.
Rizkallah
,
Oliver K.
Castell
,
Dafydd
Jones
Diamond Proposal Number(s):
[10462]
Open Access
Abstract: Fluorescent proteins (FPs) are commonly used in pairs to monitor dynamic biomolecular events through changes in proximity via distance dependent processes such as Förster resonance energy transfer (FRET). The impact of FP association is assessed by predicting dimerization sites in silico and stabilizing the dimers by bio‐orthogonal covalent linkages. In each tested case dimerization changes inherent fluorescence, including FRET. GFP homodimers demonstrate synergistic behavior with the dimer being brighter than the sum of the monomers. The homodimer structure reveals the chromophores are close with favorable transition dipole alignments and a highly solvated interface. Heterodimerization (GFP with Venus) results in a complex with ≈87% FRET efficiency, significantly below the 99.7% efficiency predicted. A similar efficiency is observed when the wild‐type FPs are fused to a naturally occurring protein–protein interface system. GFP complexation with mCherry results in loss of mCherry fluorescence. Thus, simple assumptions used when monitoring interactions between proteins via FP FRET may not always hold true, especially under conditions whereby the protein–protein interactions promote FP interaction.
|
Nov 2020
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Guofa
Cai
,
Peng
Cui
,
Wenxiong
Shi
,
Samuel
Morris
,
Shi Nee
Lou
,
Jingwei
Chen
,
Jing‐hao
Ciou
,
Vinod K
Paidi
,
Kug‐seung
Lee
,
Shuzhou
Li
,
Pooi See
Lee
Diamond Proposal Number(s):
[21425]
Open Access
Abstract: The rational design of previously unidentified materials that could realize excellent electrochemical‐controlled optical and charge storage properties simultaneously, are especially desirable and useful for fabricating smart multifunctional devices. Here, a facile synthesis of a 1D π–d conjugated coordination polymer (Ni‐BTA) is reported, consisting of metal (Ni)‐containing nodes and organic linkers (1,2,4,5‐benzenetetramine), which could be easily grown on various substrates via a scalable chemical bath deposition method. The resulting Ni‐BTA film exhibits superior performances for both electrochromic and energy storage functions, such as large optical modulation (61.3%), high coloration efficiency (223.6 cm2 C−1), and high gravimetric capacity (168.1 mAh g−1). In particular, the Ni‐BTA film can maintain its electrochemical recharge‐ability and electrochromic properties even after 10 000 electrochemical cycles demonstrating excellent durability. Moreover, a smart energy storage indicator is demonstrated in which the energy storage states can be visually recognized in real time. The excellent electrochromic and charge storage performances of Ni‐BTA films present a great promise for Ni‐BTA nanowires to be used as practical electrode materials in various applications such as electrochromic devices, energy storage cells, and multifunctional smart windows.
|
Sep 2020
|
|
I13-2-Diamond Manchester Imaging
|
Isabella
Silva Barreto
,
Sophie
Le Cann
,
Saima
Ahmed
,
Vivien
Sotiriou
,
Mikael J.
Turunen
,
Ulf
Johansson
,
Angel
Rodriguez-Fernandez
,
Tilman A.
Grünewald
,
Marianne
Liebi
,
Niamh C.
Nowlan
,
Hanna
Isaksson
Diamond Proposal Number(s):
[14789, 16557]
Open Access
Abstract: Long bone mineralization occurs through endochondral ossification, where a cartilage template mineralizes into bone‐like tissue with a hierarchical organization from the whole bone‐scale down to sub‐nano scale. Whereas this process has been extensively studied at the larger length scales, it remains unexplored at some of the smaller length scales. In this study, the changes in morphology, composition, and structure during embryonic mineralization of murine humeri are investigated using a range of high‐resolution synchrotron‐based imaging techniques at several length scales. With micro‐ and nanometer spatial resolution, the deposition of elements and the shaping of mineral platelets are followed. Rapid mineralization of the humeri occurs over approximately four days, where mineral to matrix ratio and calcium content in the most mineralized zone reach adult values shortly before birth. Interestingly, zinc is consistently found to be localized at the sites of ongoing new mineralization. The mineral platelets in the most recently mineralized regions are thicker, longer, narrower, and less aligned compared to those further into the mineralized region. In summary, this study demonstrates a specific spatial distribution of zinc, with highest concentration where new mineral is being deposited and that the newly formed mineral platelets undergo slight reshaping and reorganization during embryonic development.
|
Sep 2020
|
|
I06-Nanoscience
|
Weiwei
Li
,
Bonan
Zhu
,
Qian
He
,
Albina Y.
Borisevich
,
Chao
Yun
,
Rui
Wu
,
Ping
Lu
,
Zhimin
Qi
,
Qiang
Wang
,
Aiping
Chen
,
Haiyan
Wang
,
Stuart A.
Cavill
,
Kelvin H. L.
Zhang
,
Judith L.
Macmanus‐driscoll
Diamond Proposal Number(s):
[17284]
Open Access
Abstract: Ultrathin epitaxial films of ferromagnetic insulators (FMIs) with Curie temperatures near room temperature are critically needed for use in dissipationless quantum computation and spintronic devices. However, such materials are extremely rare. Here, a room‐temperature FMI is achieved in ultrathin La0.9Ba0.1MnO3 films grown on SrTiO3 substrates via an interface proximity effect. Detailed scanning transmission electron microscopy images clearly demonstrate that MnO6 octahedral rotations in La0.9Ba0.1MnO3 close to the interface are strongly suppressed. As determined from in situ X‐ray photoemission spectroscopy, O K‐edge X‐ray absorption spectroscopy, and density functional theory, the realization of the FMI state arises from a reduction of Mn eg bandwidth caused by the quenched MnO6 octahedral rotations. The emerging FMI state in La0.9Ba0.1MnO3 together with necessary coherent interface achieved with the perovskite substrate gives very high potential for future high performance electronic devices.
|
Nov 2019
|
|