B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Diamond Proposal Number(s):
[28470]
Abstract: The chemical structures of aluminosilicate hydrates presented in alkali-activated geopolymer materials underpin their performances. Mg-substituted sodium aluminosilicate hydrates (N(-M)-A-S-H) are likely to be present in alkali-activated geopolymer materials prepared using MgO-containing precursors, however, their atomic-level structures remain unclear. The lack of such knowledge made it challenging to identify and distinguish N(-M)-A-S-H from complex alkali-activated geopolymer systems (i.e., alkali-activated slag, alkali-activated Mg-rich minerals), and therefore brought challenges in understanding and predicting their durability. This study characterised for the first time the atomic structures of the synthetic N(-M)-A-S-H gels, prepared through ion-exchange or co-synthesis, using X-ray absorption near-edge spectroscopy (XANES) at Si, Al and Mg K-edge. The results suggest that the substitution of Mg in the extra-framework locations of the alkali aluminosilicate hydrates (N-A-S-H) leads to negligible changes in the coordination environments of the aluminosilicate framework. However, the Mg coordination environment is distinguishably different from other Mg-containing phases in the systems, e.g., hydrotalcite. The Mg K-edge XANES of N(-M)-A-S-H shows a 0.8–1.2 eV shift compared with hydrotalcite. The results presented in this study can be used as the fingerprint to probe the presence of N(-M)-A-S-H in alkali-activated geopolymer materials containing Mg element.
|
Nov 2022
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[16025]
Open Access
Abstract: Assessing element speciation and solubility control mechanisms in multi-contaminated soils poses great challenges. In this study, we examined the speciation and mechanisms controlling the solubility of As and Zn in a soil historically contaminated with As, Cu, Cr, and Zn salts used for wood preservation. The leaching behavior of dissolved species, particles, and colloids was studied in an irrigation experiment with intact soil columns. Batch experiments were used to study the solubility of dissolved species as a function of pH (2–8). The speciation of As and Zn in bulk soil and leached particles was studied with microscale X-ray fluorescence (μ-XRF) and extended X-ray absorption fine structure (EXAFS) spectroscopy. Chemical speciation and solubility were evaluated by geochemical modelling. μ-XRF of bulk soil and particles showed that As and Zn were correlated in space. Bulk- and μ-EXAFS of As and Zn, in combination with calculated ion activity products of possible As-Zn minerals, suggested a koritnigite (ZnHAsO4·H2O) phase controlling the dissolved fraction of As(V) and Zn with an apparent log Ksp of −21.9 ± 0.46. This phase lowered the solubility of As by almost two orders of magnitude in soil at pH > 5, and could therefore be of great importance at other multi-contaminated sites.
|
Apr 2022
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[10038]
Open Access
Abstract: Low-pH cements are candidate materials for use in the construction of geological disposal facilities for the long-term management of nuclear waste. Since these facilities will operate over long time scales, the changes in mineralogy and microstructure require evaluation as a function of time. As a first step towards this understanding, the hydration of a standardised low-pH cement paste, known as the Cebama reference cement, was investigated over an 18-month period. Characterisation was performed at 28 days of curing, at 20 °C and 40 °C, and novel synchrotron radiation X-ray diffraction experiments were performed, in-situ, from 90 min to 18 months of curing. Concurrent solid state 29Si and 27Al MAS NMR data were acquired for parallel samples to quantify the extent of cement hydration and the composition and mean chain length of the predominant calcium aluminosilicate hydrate (C-(A)-S-H) reaction product. After 18 months, cement clinker phases were still present, highlighting the slow hydration kinetics of this low-pH cement. The data presented provide a benchmark for ongoing and future studies of low-pH cements in geological disposal environments, over extended time scales.
|
Mar 2020
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[8941]
Open Access
Abstract: The presence of uranium in groundwater at nuclear sites can be controlled by microbial processes. Here we describe the results from stimulating microbial reduction of U(VI) in sediment samples obtained from a nuclear-licensed site in the UK. A variety of different lithology sediments were selected to represent the heterogeneity of the subsurface at a site underlain by glacial outwash deposits and sandstone. The natural sediment microbial communities were stimulated via the addition of an acetate/lactate electron donor mix and were monitored for changes in geochemistry and molecular ecology. Most sediments facilitated the removal of 12 ppm U(VI) during the onset of Fe(III)-reducing conditions; this was reflected by an increase in the proportion of known Fe(III)- and U(VI)-reducing species. However U(VI) remained in solution in two sediments and Fe(III)-reducing conditions did not develop. Sequential extractions, addition of an Fe(III)-enrichment culture and most probable number enumerations revealed that a lack of bioavailable iron or low cell numbers of Fe(III)-reducing bacteria may be responsible. These results highlight the potential for stimulation of microbial U(VI)-reduction to be used as a bioremediation strategy at UK nuclear sites, and they emphasise the importance of both site-specific and borehole-specific investigations to be completed prior to implementation.
|
Dec 2014
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[8163]
Open Access
Abstract: Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable capacity for the remediation of COPR related Cr(VI) contamination, with the synthetic nZVI demonstrating greater reactivity than the BnM. However, the biosynthesized BnM was also capable of significant Cr(VI) reduction and demonstrated a greater efficiency for the coupling of its electrons towards Cr(VI) reduction than the nZVI.
|
Dec 2014
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[8070, 8544, 7593]
Open Access
Abstract: The interaction of groundwater with cement in a geological disposal facility (GDF) for intermediate level radioactive waste will produce a high pH leachate plume. Such a plume may alter the physical and chemical properties of the GDF host rock. However, the geochemical and mineralogical processes which may occur in such systems over timescales relevant for geological disposal remain unclear. This study has extended the timescale for laboratory experiments and shown that, after 15 years two distinct phases of reaction may occur during alteration of a dolomite-rich rock at high pH. In these experiments the dissolution of primary silicate minerals and the formation of secondary calcium silicate hydrate (C¨CS¨CH) phases containing varying amounts of aluminium and potassium (C¨C(A)¨C(K)¨CS¨CH) during the early stages of reaction (up to 15 months) have been superseded as the systems have evolved. After 15 years significant dedolomitisation (MgCa(CO3)2 + 2OH− ¡ú Mg(OH)2 + CaCO3 + CO32−(aq)) has led to the formation of magnesium silicates, such as saponite and talc, containing variable amounts of aluminium and potassium (Mg¨C(Al)¨C(K)¨Csilicates), and calcite at the expense of the early-formed C¨C(A)¨C(K)¨CS¨CH phases. This occured in high pH solutions representative of two different periods of cement leachate evolution with little difference in the alteration processes in either a KOH and NaOH or a Ca(OH)2 dominated solution but a greater extent of alteration in the higher pH KOH/NaOH leachate. The high pH alteration of the rock over 15 years also increased the rock¡¯s sorption capacity for U(VI). The results of this study provide a detailed insight into the longer term reactions occurring during the interaction of cement leachate and dolomite-rich rock in the geosphere. These processes have the potential to impact on radionuclide transport from a geodisposal facility and are therefore important in underpinning any safety case for geological disposal.
|
Nov 2014
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[7525]
Open Access
Abstract: The tailings dam breach at the Ajka alumina plant, western Hungary in 2010 introduced ∼1 million m3 of red mud suspension into the surrounding area. Red mud (fine fraction bauxite residue) has a characteristically alkaline pH and contains several potentially toxic elements, including arsenic. Aerobic and anaerobic batch experiments were prepared using soils from near Ajka in order to investigate the effects of red mud addition on soil biogeochemistry and arsenic mobility in soil–water experiments representative of land affected by the red mud spill. XAS analysis showed that As was present in the red mud as As(V) in the form of arsenate. The remobilisation of red mud associated arsenate was highly pH dependent and the addition of phosphate to red mud suspensions greatly enhanced As release to solution. In aerobic batch experiments, where red mud was mixed with soils, As release to solution was highly dependent on pH. Carbonation of these alkaline solutions by dissolution of atmospheric CO2 reduced pH, which resulted in a decrease of aqueous As concentrations over time. However, this did not result in complete removal of aqueous As in any of the experiments. Carbonation did not occur in anaerobic experiments and pH remained high. Aqueous As concentrations initially increased in all the anaerobic red mud amended experiments, and then remained relatively constant as the systems became more reducing, both XANES and HPLC–ICP-MS showed that no As reduction processes occurred and that only As(V) species were present. These experiments show that there is the potential for increased As mobility in soil–water systems affected by red mud addition under both aerobic and anaerobic conditions.
|
Oct 2014
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[7525]
Open Access
Abstract: Caesium-137 (t1/2 = 30 years) is a common contaminant at nuclear legacy sites. Often the mobility of 137Cs in the environment is governed by its sorption to charged sites within the sediment. To this end it is important to understand the sorption behaviour of caesium across a wide range of environmental conditions. This work investigates the effect of varying solution composition (pH and competing ions) on the sorption of caesium to micaceous aquifer sediment across a large concentration range (1.0 × 10−11 – 1.0 × 10−1 mol L−1 Cs+). Experimental results show that Cs+ exhibits three distinct sorption behaviours at three different concentration ranges. At very low concentrations < 1.0 × 10−6 mol L−1 Cs+ sorption was unaffected by competition with Na+ or H+ but significantly reduced in high ionic strength K+ solution. Secondly between 1 × 10−6 and 1.0 × 10−3 mol L−1 Cs+ is strongly sorbed in a neutral pH, low ionic strength background but sorption is significantly reduced in solutions with either a high concentration of Na+ or K+ ions or low pH. At high concentrations > 1.0 × 10−3 mol L−1 Cs+ sorption is reduced in all systems due to saturation of the sediment’s sorption capacity. A multi-site cation exchange model was used to interpret the sorption behaviour. From this it was determined that at low concentrations Cs+ sorbs to the illite frayed edge sites only in competition with K+ ions. However, once the frayed edge sites are saturated the Cs+ sorbs to the Type II and Planar sites in competition with K+, Na+ and H+ ions. Therefore sorption of Cs+ at concentrations > 1.0 × 10−6 mol L−1 is significantly reduced in both high ionic strength and low pH solutions. This is a significant result with regard to predicting the migration of 137Cs+ in acidic or high ionic strength groundwaters.
|
Jan 2014
|
|
|
Abstract: The interaction (e.g., adsorption and incorporation) of Pb with iron(III) (oxyhydr)oxide minerals has a significant influence on its partitioning and transport in many natural systems (e.g., rivers). The incorporation of Pb during ferrihydrite crystallization to hematite and goethite at neutral and alkaline pH, in the presence and absence of sulphate
SO42-
has been studied using X-ray Absorption Spectroscopy (XAS), X-ray Powder Diffraction (XRD), electron microscopic techniques and chemical extraction procedures. The XRD data showed that hematite and goethite were the end-products of crystallization at pH 5, whereas goethite was the sole product at pH 13. The Pb partitioning data revealed that upon crystallization at pH 5, ∼60% of the initially adsorbed Pb remained on the surface of the crystalline hematite/goethite, while ∼20% became incorporated with the remaining ∼20% released back into solution. Lead incorporation occurred primarily during the initial stage of ferrihydrite crystallization prior to hematite/goethite formation at pH 5. The presence of
SO42-
at pH 5 had little influence on the partitioning of Pb or mineral phases formed. At pH 13, 52% of the adsorbed Pb was incorporated during crystallization to goethite. Lead incorporation into this phase occurred over the entire crystallization process with adsorbed Pb incorporated during goethite crystal growth. X-ray Absorption Spectroscopy and unit cell size data demonstrated that Pb did not replace Fe within the structure of hematite or goethite, but was incorporated into defects or nanopores within the iron (oxyhydr)oxides.
|
Dec 2013
|
|
B18-Core EXAFS
|
Open Access
Abstract: At nuclear contaminated sites, microbially-mediated Fe(III) reduction under alkaline conditions opens up the potential for co-treatment of the groundwater contaminants 99Tc, though reduction to less mobile Tc(IV) phases, and 90Sr, through increased sorption and/or precipitation promoted at higher pH. In the experiments described here, microbial enrichment cultures derived from representative Sellafield sediments were used to probe the effect of microbially-mediated Fe(III) reduction on the mobility of 99Tc and Sr (as stable Sr2+ at elevated concentrations and 90Sr2+ at ultra-trace concentrations) under both neutral and alkaline conditions. The reduction of Fe(III) in enrichment culture experiments at an initial pH of 7 or 9 resulted in the precipitation of an Fe(II) bearing biomineral comprised of siderite and vivianite. Results showed that
added at 1.6 × 10−6 M was removed (>80%) from solution concurrent with Fe(III) reduction at both pH 7 and pH 9. Furthermore, X-ray absorption spectroscopy of the reduced biominerals confirmed reduction of Tc(VII) to Tc(IV). To understand Sr behaviour in these systems, Sr2+ was added to enrichment cultures at ultra-trace concentrations (2.2 × 10−10 M (as 90Sr2+)) and at higher concentrations (1.15 × 10−3 M (as stable Sr2+)). In ultra-trace experiments at pH 7, microbially active systems showed enhanced removal of 90Sr compared to the sterile control. This was likely due to sorption of 90Sr2+ to the Fe(II)-bearing biominerals that formed in situ. By contrast, at pH 9, the sterile control showed comparable removal of 90Sr to the microbially active experiment even though the Fe-minerals formed were of very different character in the active (vivianite, siderite) versus sterile (an amorphous Fe(III)-phase) systems. Overall, 90Sr bioreduction experiments showed 60–70% removal of the added 90Sr across the different systems: this suggests that treatment strategies involving bioreduction and the promotion of Fe(III)-reducing conditions to scavenge Tc(IV) are not incompatible with treatment of groundwater 90Sr contamination. In systems with elevated Sr2+ concentrations and an initial pH of 7, microbially active systems showed <20% removal of added Sr2+ following Fe(III) reduction with little or no removal in sterile controls. At pH 9, significant Sr2+ was removed from solution in both sterile and microbially active experiments and was attributed to Sr-sorption to mineral phases both chemically precipitated in sterile controls, and biologically precipitated in the microbially active systems. These results confirm that in systems with an elevated natural or anthropogenic Sr2+ loading, bioreduction at modestly alkaline pH is compatible with co-treatment of both
and 90Sr2+. These data are discussed in terms of aqueous geochemistry trends, X-ray diffraction and morphological data, and thermodynamic modelling. The results demonstrate the potential for removal of trace levels of 99Tc and 90Sr2+ from groundwaters during stimulated bioreduction and highlight that in the presence of stable Sr2+, optimal removal for technetium and strontium is likely to occur under mildly alkaline, reducing conditions.
|
Nov 2013
|
|