Krios I-Titan Krios I at Diamond
|
Matthew S
Proctor
,
Lorna A.
Malone
,
David A.
Farmer
,
David J. K.
Swainsbury
,
Frederick R.
Hawkings
,
Federica
Pastorelli
,
Thomas Z.
Emrich-Mills
,
C. Alistair
Siebert
,
C. Neil
Hunter
,
Matthew P.
Johnson
,
Andrew
Hitchcock
Diamond Proposal Number(s):
[21004, 21005]
Open Access
Abstract: In oxygenic photosynthesis, the cytochrome b6f (cytb6f) complex links the linear electron transfer (LET) reactions occurring at photosystems I and II and generates a transmembrane proton gradient via the Q-cycle. In addition to this central role in LET, cytb6f also participates in a range of processes including cyclic electron transfer (CET), state transitions and photosynthetic control. Many of the regulatory roles of cytb6f are facilitated by auxiliary proteins that differ depending upon the species, yet because of their weak and transient nature the structural details of these interactions remain unknown. An apparent key player in the regulatory balance between LET and CET in cyanobacteria is PetP, a ~10 kDa protein that is also found in red algae but not in green algae and plants. Here, we used cryogenic electron microscopy to determine the structure of the Synechocystis sp. PCC 6803 cytb6f complex in the presence and absence of PetP. Our structures show that PetP interacts with the cytoplasmic side of cytb6f, displacing the C-terminus of the PetG subunit and shielding the C-terminus of cytochrome b6, which binds the heme cn molecule that is suggested to mediate CET. The structures also highlight key differences in the mode of plastoquinone binding between cyanobacterial and plant cytb6f complexes, which we suggest may reflect the unique combination of photosynthetic and respiratory electron transfer in cyanobacterial thylakoid membranes. The structure of cytb6f from a model cyanobacterial species amenable to genetic engineering will enhance future site-directed mutagenesis studies of structure-function relationships in this crucial ET complex.
|
Jun 2022
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[18548]
Open Access
Abstract: Interaction of BRCA2 through ca. 30 amino acid residue motifs, BRC repeats, with RAD51 is a conserved feature of the double-strand DNA break repair by homologous recombination in eukaryotes. In humans the binding of the eight BRC repeats is defined by two sequence motifs, FxxA and LFDE, interacting with distinct sites on RAD51. Little is known of the interaction of BRC repeats in other species, especially in protozoans, where variable number of BRC repeats are found in BRCA2 proteins. Here we have studied in detail the interactions of the two BRC repeats in Leishmania infantum BRCA2 with RAD51. We show LiBRC1 is a high-affinity repeat and determine the crystal structure of its complex with LiRAD51. Using truncation mutagenesis of the LiBRC1 repeat, we demonstrate that high affinity binding is maintained in the absence of an LFDE-like motif and suggest compensatory structural features. These observations point towards a divergent evolution of BRC repeats, where a common FxxA-binding ancestor evolved additional contacts for affinity maturation and fine-tuning.
|
May 2022
|
|
I03-Macromolecular Crystallography
|
Zhuoyao
Chen
,
Jinwei
Zhang
,
Adrián R.
Murillo-De-Ozores
,
María
Castañeda-Bueno
,
Francesca
D'Amico
,
Raphael
Heilig
,
Charlotte E.
Manning
,
Fiona J.
Sorrell
,
Vincenzo
D'Angiolella
,
Roman
Fischer
,
Monique P. C.
Mulder
,
Gerardo
Gamba
,
Dario R.
Alessi
,
Alex N.
Bullock
Diamond Proposal Number(s):
[10619]
Open Access
Abstract: The BTB-Kelch protein KLHL3 is a Cullin3-dependent E3 ligase that mediates the ubiquitin-dependent degradation of kinases WNK1–4 to control blood pressure and cell volume. A crystal structure of KLHL3 has defined its binding to an acidic degron motif containing a PXXP sequence that is strictly conserved in WNK1, WNK2 and WNK4. Mutations in the second proline abrograte the interaction causing the hypertension syndrome pseudohypoaldosteronism type II. WNK3 shows a diverged degron motif containing four amino acid substitutions that remove the PXXP motif raising questions as to the mechanism of its binding. To understand this atypical interaction, we determined the crystal structure of the KLHL3 Kelch domain in complex with a WNK3 peptide. The electron density enabled the complete 11-mer WNK-family degron motif to be traced for the first time revealing several conserved features not captured in previous work, including additional salt bridge and hydrogen bond interactions. Overall, the WNK3 peptide adopted a conserved binding pose except for a subtle shift to accommodate bulkier amino acid substitutions at the binding interface. At the centre, the second proline was substituted by WNK3 Thr541, providing a unique phosphorylatable residue among the WNK-family degrons. Fluorescence polarisation and structural modelling experiments revealed that its phosphorylation would abrogate the KLHL3 interaction similarly to hypertension-causing mutations. Together, these data reveal how the KLHL3 Kelch domain can accommodate the binding of multiple WNK isoforms and highlight a potential regulatory mechanism for the recruitment of WNK3.
|
Mar 2022
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[15549]
Open Access
Abstract: ATP-binding cassette (ABC) proteins play important roles in cells as importers and exporters but as membrane proteins they are subject to well-known challenges of isolating pure and stable samples for study. One solution to this problem is to use styrene-maleic acid lipid particles (SMALPs). Styrene-maleic acid (SMA) can be added directly to membranes, forming stable nanoparticles incorporating membrane proteins and lipids. Here we use Sav1866, a well-characterised bacterial protein, as a proxy for ABC proteins in general. We show that stable and monodispersed Sav1866 can be purified at high yield using SMA. This protein can be used for biophysical characterisations showing that its overall structure is consistent with existing evidence. However, like other ABC proteins in SMALPs it does not hydrolyse ATP. The lack of ATPase activity in ABC–SMALPs may result from conformational trapping of the proteins in SMALPs. Undertaken in a controlled manner, conformational trapping is a useful tool to stabilise protein samples into a single conformation for structural studies. Due to their inability to hydrolyse ATP, the conformation of Sav1866–SMALPs cannot be altered using ATP and vanadate after purification. To achieve controlled trapping of Sav1866–SMALPs we show that Sav1866 in crude membranes can be incubated with ATP, magnesium and sodium orthovanadate. Subsequent solubilisation and purification with SMA produces a sample of Sav1866–SMALPs with enhanced stability, and in a single conformational state. This method may be generally applicable to vanadate-sensitive ABC proteins and overcomes a limitation of the SMALP system for the study of this protein family.
|
Jan 2022
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[19951, 21035]
Open Access
Abstract: Ubiquitination and ADP-ribosylation are post-translational modifications that play major roles in pathways including the DNA damage response and viral infection. The enzymes responsible for these modifications are therefore potential targets for therapeutic intervention. DTX3L is an E3 Ubiquitin ligase that forms a heterodimer with PARP9. In addition to its ubiquitin ligase activity, DTX3L-PARP9 also acts as an ADP-ribosyl transferase for Gly76 on the C-terminus of ubiquitin. NAD+-dependent ADP-ribosylation of ubiquitin by DTX3L-PARP9 prevents ubiquitin from conjugating to protein substrates. To gain insight into how DTX3L-PARP9 generates these post-translational modifications, we have generated recombinant forms of DTX3L and PARP9 and studied their physical interactions. We show the DTX3L D3 domain (230-510) mediates the interaction with PARP9 with nanomolar affinity and an apparent 1:1 stoichiometry. We also show that DTX3L and PARP9 assemble into a higher molecular weight oligomer, and that this is mediated by the DTX3L N-terminal region (1-200). Lastly, we show that ADP-ribosylation of ubiquitin at Gly76 is reversible in vitro by several Macrodomain-type hydrolases. Our study provides a framework to understand how DTX3L-PARP9 mediates ADP-ribosylation and ubiquitination through both intra- and inter-subunit interactions.
|
Jan 2022
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Muhamamd
Faheem
,
Napoleao
Fonseca Valadares
,
Jose
Brandao-Neto
,
Domenico
Bellini
,
Patrick
Collins
,
Nicholas M.
Pearce
,
Louise
Bird
,
Juliana
Torini De Souza
,
Raymond
Owens
,
Humberto
Pereira
,
Frank
Von Delft
,
João Alexandre Ribeiro Gonçalves
Barbosa
Diamond Proposal Number(s):
[11175]
Open Access
Abstract: Several Schistosoma species cause Schistosomiasis, an endemic disease in 78 countries that is ranked second amongst the parasitic diseases in terms of its socioeconomic impact and human health importance. The drug recommended for treatment by the WHO is praziquantel (PZQ), but there are concerns associated with PZQ, such as the lack of information about its exact mechanism of action, its high price, its effectiveness – which is limited to the parasite’s adult form – and reports of resistance. The parasites lack the de novo purine pathway, rendering them dependent on the purine salvage pathway or host purine bases for nucleotide synthesis. Thus, the Schistosoma purine salvage pathway is an attractive target for the development of necessary and selective new drugs. In this study, the purine nucleotide phosphorylase II (PNP2), a new isoform of PNP1, was submitted to a high-throughput fragment-based hit discovery using a crystallographic screening strategy. PNP2 was crystallized and crystals were soaked with 827 fragments, a subset of the Maybridge 1000 library. X-ray diffraction data was collected and structures were solved. Out of 827-screened fragments we have obtained a total of 19 fragments that show binding to PNP2. 14 of these fragments bind to the active site of PNP2, while five were observed in three other sites. Here we present the first fragment screening against PNP2.
|
Sep 2021
|
|
I03-Macromolecular Crystallography
|
Jessie
Branch
,
Badri S.
Rajagopal
,
Alessandro
Paradisi
,
Nick
Yates
,
Peter J
Lindley
,
Jake
Smith
,
Kristian
Hollingsworth
,
Bruce
Turnbull
,
Bernard
Henrissat
,
Alison
Parkin
,
Alan
Berry
,
Glyn R.
Hemsworth
Diamond Proposal Number(s):
[15378]
Open Access
Abstract: The release of glucose from lignocellulosic waste for subsequent fermentation into biofuels holds promise for securing humankind's future energy needs. The discovery of a set of copper dependent enzymes known as lytic polysaccharide monooxygenases (LPMOs) has galvanized new research in this area. LPMOs act by oxidatively introducing chain breaks into cellulose and other polysaccharides, boosting the ability of cellulases to act on the substrate. Although several proteins have been implicated as electron sources in fungal LPMO biochemistry, no equivalent bacterial LPMO electron donors have been previously identified, although the proteins Cbp2D and E from Cellvibrio japonicus have been implicated as potential candidates. Here we analyze a small c-type cytochrome (CjX183) present in Cellvibrio japonicus Cbp2D, and show that it caninitiate bacterial CuII/I LPMO reduction and also activate LPMO-catalyzed cellulose-degradation. In the absence of cellulose, CjX183-driven reduction of the LPMO results in less H2O2 production from O2, and correspondingly less oxidative damage to the enzyme than when ascorbate is used as the reducing agent. Significantly, using CjX183 as the activator maintained similar cellulase boosting levels relative to the use of an equivalent amount of ascorbate. Our results therefore add further evidence to the impact that the choice of electron source can have on LPMO action. Furthermore, the study of Cbp2D and other similar proteins may yet reveal new insight into the redox processes governing polysaccharide degradation in bacteria.
|
Jul 2021
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Open Access
Abstract: The human protein kinase ULK3 regulates the timing of membrane abscission, thus being involved in exosome budding and cytokinesis. Herein, we present the first high-resolution structures of the ULK3 kinase domain. Its unique features are explored against the background of other ULK kinases. An inhibitor fingerprint indicates that ULK3 is highly druggable and capable of adopting a wide range of conformations. In accordance with this, we describe a conformational switch between the active and an inactive ULK3 conformation, controlled by the properties of the attached small-molecule binder. Finally, we discuss a potential substrate-recognition mechanism of the full-length ULK3 protein.
|
Jun 2021
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14631, 17180, 20015]
Open Access
Abstract: The activation loop (A-loop) plays a key role in regulating the catalytic activity of protein kinases. Phosphorylation in this region enhances the phosphoryl transfer rate of the kinase domain and increases its affinity for ATP. Furthermore, the A-loop possesses autoinhibitory functions in some kinases, where it collapses onto the protein surface and blocks substrate binding when unphosphorylated. Due to its flexible nature, the A-loop is usually disordered and untraceable in kinase domain crystal structures. The resulting lack of structural information is regrettable as it impedes the design of drug A-loop contacts, which have proven favourable in multiple cases. Here we characterize the binding with A-loop engagement between type 1.5 kinase inhibitor ‘example 172’ (EX172) and Mer tyrosine kinase (MerTK). With the help of crystal structures and binding kinetics we portray how the recruitment of the A-loop elicits a two-step binding mechanism which results in a drug-target complex characterized by high affinity and long residence time. In addition, the type 1.5 compound possesses excellent kinome selectivity and a remarkable preference for the phosphorylated over the dephosphorylated form of MerTK. We discuss these unique characteristics in the context of known type 1 and type 2 inhibitors and highlight opportunities for future kinase inhibitor design.
|
Oct 2020
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Toxin-antitoxin systems play key roles in bacterial adaptation, including protection from antibiotic assault and infection by bacteriophages. The type IV toxin-antitoxin system AbiE encodes a DUF1814 nucleotidyltransferase-like toxin, and a two-domain antitoxin. In Streptococcus agalactiae, the antitoxin AbiEi negatively autoregulates abiE expression through positively co-operative binding to inverted repeats within the promoter. The human pathogen Mycobacterium tuberculosis encodes four DUF1814 putative toxins, two of which have antitoxins homologous to AbiEi. One such M.tuberculosis antitoxin, named Rv2827c, is required for growth and whilst the structure has previously been solved, the mode of regulation is unknown. To complete the gaps in our understanding, we first solved the structure of S. agalactiae AbiEi to 1.83 Å resolution for comparison with M.tuberculosis Rv2827c. AbiEi contains an N-terminal DNA binding domain and C-terminal antitoxicity domain, with bilateral faces of opposing charge. The overall AbiEi fold is similar to Rv2827c, though smaller, and with a 65º difference in C-terminal domain orientation. We further demonstrate that, like AbiEi, Rv2827c can autoregulate toxin-antitoxin operon expression. In contrast to AbiEi, the Prv2827c promoter contains two sets of inverted repeats, which bind Rv2827c with differing affinities depending on the sequence consensus. Surprisingly, Rv2827c bound with negative co-operativity to the full Prv2827c promoter, demonstrating an unexpectedly complex form of transcriptional regulation.
|
Jun 2020
|
|