I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[14789, 16557]
Open Access
Abstract: Fetal immobilization affects skeletal development and can lead to severe malformations. Still, how mechanical load affects embryonic bone formation is not fully elucidated. This study combines mechanobiology, image analysis and developmental biology, to investigate the structural effects of muscular loading on embryonic long bones. We present a novel approach involving a semi-automatic workflow, to study the spatial and temporal evolutions of both hard and soft tissues in 3D without any contrast agent at micrometrical resolution. Using high-resolution phase-contrast-enhanced X-ray synchrotron microtomography, we compare the humeri of Splotch-delayed embryonic mice lacking skeletal muscles with healthy littermates. The effects of skeletal muscles on bone formation was studied from the first stages of mineral deposition (Theiler Stages 23 and 24) to just before birth (Theiler Stage 27). The results show that muscle activity affects both growth plate and mineralized regions, especially during early embryonic development. When skeletal muscles were absent, there was reduced mineralization, altered tuberosity size and location, and, at early embryonic stages, decreased chondrocyte density, size and elongation compared to littermate controls. The proposed workflow enhances our understanding of mechanobiology of early bone formation and could be implemented for the study of other complex biological tissues.
|
Jan 2021
|
|
I22-Small angle scattering & Diffraction
|
Abstract: Glucocorticoid (or steroid) induced osteoporosis (GIOP) is the leading form of secondary osteoporosis, affecting up to 50% of patients receiving chronic glucocorticoid therapy. Bone quantity (bone mass) changes in GIOP patients alone are inadequate to explain the increased fracture risk, and bone material changes (bone quality) at multiple levels have been implicated in the reduced mechanics. Quantitative analysis of specific material-level changes is limited. Here, we combined multiscale experimental techniques (scanning small/wide-angle X-ray scattering/diffraction, backscattered electron imaging, and X-ray radiography) to investigate these changes in a mouse model (Crh−120/+) with chronic endogenous steroid production. Nanoscale degree of orientation, the size distribution of mineral nanocrystals in the bone matrix, the spatial map of mineralisation on the femoral cortex, and the microporosity showed significant changes between GIOP and the control, especially in the endosteal cortex. Our work can provide insight into the altered structure-property relationship leading to lowered mechanical properties in GIOP.
|
Sep 2020
|
|
I22-Small angle scattering & Diffraction
|
Abstract: Glucocorticoid induced osteoporosis (GIOP) is the most common negative consequence of long-term glucocorticoid treatment, leading to increased fracture risk followed by loss of mobility and high mortality risk. These biologically induced changes in bone quality at molecular level lead to changes both in bone matrix architecture and bone matrix composition. However, the quantitative details of changes in bone quality - and especially their link to reduced macroscale mechanical properties are still largely missing. In this study, a mouse model for glucocorticoid-induced osteoporosis (GIOP) was used to investigate mechanical and material alterations in bone cortex (natural nanocomposite) at different scale. By combining quantitative backscattered electron (qBSE) imaging, nanoindentation and high brilliance synchrotron X-ray nanomechanical imaging on a genetically modified mouse model of GIOP, we were able to quantify the local indentation modulus, mineralization distribution and the alterations of nanoscale structures and deformation mechanisms in the mid-diaphysis of femur, and relate them to the macroscopic mechanical changes. Our results showed clear and significant changes in terms of material quality of bone at nanoscale and microscale, which manifests itself in development of spatial heterogeneities in mineralization and indentation moduli across the bone organ, with potential implications for increased fracture risk.
|
Mar 2020
|
|
I22-Small angle scattering & Diffraction
|
L.
Xi
,
P.
De Falco
,
E.
Barbieri
,
A.
Karunaratne
,
L.
Bentley
,
C. T.
Esapa
,
G. R.
Davis
,
N. J.
Terrill
,
R. D.
Cox
,
N. M.
Pugno
,
R. V.
Thakker
,
R.
Weinkamer
,
W. W.
Wu
,
D. N.
Fang
,
H. S.
Gupta
Diamond Proposal Number(s):
[9893, 11806, 12483]
Abstract: As bone is used in a dynamic mechanical environment, understanding the structural origins of its time-dependent mechanical behaviour – and the alterations in metabolic bone disease – is of interest. However, at the scale of the mineralized fibrillar matrix (nanometre-level), the nature of the strain-rate dependent mechanics is incompletely understood. Here, we investigate the fibrillar- and mineral-deformation behaviour in a murine model of Cushing’s syndrome, used to understand steroid induced osteoporosis, using synchrotron small- and wide-angle scattering/diffraction combined with in situ tensile testing at three strain rates ranging from 10-4 to 10-1 s-1. We find that the effective fibril- and mineral-modulus and fibrillar-reorientation show no significant increase with strain-rate in osteoporotic bone, but increase significantly in normal (wild-type) bone. By applying a fibril-lamellar two-level structural model of bone matrix deformation to fit the results, we obtain indications that altered collagen-mineral interactions at the nanoscale – along with altered fibrillar orientation distributions – may be the underlying reason for this altered strain-rate sensitivity. Our results suggest that an altered strain-rate sensitivity of the bone matrix in osteoporosis may be one of the contributing factors to reduced mechanical competence in such metabolic bone disorders, and that increasing this sensitivity may improve biomechanical performance.
|
Nov 2019
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
A.
Jin
,
J.
Cobb
,
U.
Hansen
,
R.
Bhattacharya
,
C.
Reinhard
,
N.
Vo
,
R.
Atwood
,
J.
Li
,
A.
Karunaratne
,
C.
Wiles
,
R.
Abel
Diamond Proposal Number(s):
[9811, 852]
Open Access
Abstract: Objectives Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls.
Methods Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression.
Results BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm2 vs 6.55/cm2 vs 5.25/cm2). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls.
Conclusion BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant.
|
Oct 2017
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8421]
Open Access
Abstract: Individuals with the rare developmental disorder fibrodysplasia ossificans progressiva (FOP) experience disabling heterotopic ossification caused by a gain of function mutation in the intracellular region of the BMP type I receptor kinase ALK2, encoded by the gene ACVR1. Small molecule BMP type I receptor inhibitors that block this ossification in FOP mouse models have been derived from the pyrazolo[1,5-a]pyrimidine scaffold of dorsomorphin. While the first derivative LDN-193189 exhibited pan inhibition of BMP receptors, the more recent compound LDN-212854 has shown increased selectivity for ALK2. Here we solved the crystal structure of ALK2 in complex with LDN-212854 to define how its binding interactions compare to previously reported BMP and TGFβ receptor inhibitors. LDN-212854 bound to the kinase hinge region as a typical type I ATP-competitive inhibitor with a single hydrogen bond to ALK2 His286. Specificity arising from the 5-quinoline moiety was associated with a distinct pattern of water-mediated hydrogen bonds involving Lys235 and Glu248 in the inactive conformation favoured by ALK2. The structure of this complex provides a template for the design of future ALK2 inhibitors under development for the treatment of FOP and other related conditions of heterotopic ossification.
|
Sep 2017
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[0852, 9811, 10458, 11204, 13337]
Open Access
Abstract: Bone is a complex hierarchical structure, and its principal function is to resist mechanical forces and fracture. Bone strength depends not only on the quantity of bone tissue but also on the shape and hierarchical structure. The hierarchical levels are interrelated, especially the micro-architecture, collagen and mineral components; hence, analysis of their specific roles in bone strength and stiffness is difficult. Synchrotron imaging technologies including micro-CT and small/wide angle X-ray scattering/diffraction are becoming increasingly popular for studying bone because the images can resolve deformations in the micro-architecture and collagen–mineral matrix under in situ mechanical loading. Synchrotron cannot be directly applied in vivo due to the high radiation dose but will allow researchers to carry out systematic multifaceted studies of bone ex vivo. Identifying characteristics of aging and disease will underpin future efforts to generate novel devices and interventional therapies for assessing and promoting healthy aging. With our own research work as examples, this paper introduces how synchrotron imaging technology can be used with in situ testing in bone research.
|
Sep 2016
|
|
I02-Macromolecular Crystallography
|
Maria K.
Tsoumpra
,
Joao
Muniz
,
Bobby L.
Barnett
,
Aaron A.
Kwaasi
,
Ewa S.
Pilka
,
Kathryn L.
Kavanagh
,
Artem
Evdokimov
,
Richard L.
Walter
,
Frank
Von Delft
,
Frank H.
Ebetino
,
Udo
Oppermann
,
R. Graham G.
Russell
,
James E.
Dunford
Diamond Proposal Number(s):
[442, 6391]
Open Access
Abstract: Farnesyl pyrophosphate synthase (FPPS) is the major molecular target of nitrogen-containing bisphosphonates (N-BPs), used clinically as bone resorption inhibitors. We investigated the role of threonine 201 (Thr201) and tyrosine 204 (Tyr204) residues in substrate binding, catalysis and inhibition by N-BPs, employing kinetic and crystallographic studies of mutated FPPS proteins. Mutants of Thr201 illustrated the importance of the methyl group in aiding the formation of the Isopentenyl pyrophosphate (IPP) binding site, while Tyr204 mutations revealed the unknown role of this residue in both catalysis and IPP binding. The interaction between Thr201 and the side chain nitrogen of N-BP was shown to be important for tight binding inhibition by zoledronate (ZOL) and risedronate (RIS), although RIS was also still capable of interacting with the main-chain carbonyl of Lys200. The interaction of RIS with the phenyl ring of Tyr204 proved essential for the maintenance of the isomerized enzyme-inhibitor complex. Studies with conformationally restricted analogues of RIS reaffirmed the importance of Thr201 in the formation of hydrogen bonds with N-BPs. In conclusion we have identified new features of FPPS inhibition by N-BPs and revealed unknown roles of the active site residues in catalysis and substrate binding.
|
Dec 2015
|
|
I13-2-Diamond Manchester Imaging
I22-Small angle scattering & Diffraction
|
A.
Karunaratne
,
L.
Xi
,
L.
Bentley
,
D.
Sykes
,
A.
Boyde
,
C. T.
Esapa
,
N. J.
Terrill
,
S. D. M.
Brown
,
R. D.
Cox
,
R. V.
Thakker
,
H. S.
Gupta
Open Access
Abstract: A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh-120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh-120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh-120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis.
|
Dec 2015
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[5848]
Abstract: Limitations associated with current clinical fracture risk assessment tools highlight the need for increased understanding of the fracture mechanisms of the bone and, ideally, a means of assessing this in vivo. Being a multi-layered hierarchical structure, the overall properties of the bone are dictated by its structural and compositional properties over multiple length scales. In this study, we investigate the osteonal-, micro- and tissue-level mechanical behaviour of cortical bone tissue samples from young and elderly donors through atomic force microscope (AFM) cantilever-based nanoindentation, reference point microindentation (RPI) and fracture toughness experiments respectively. We demonstrate that bone's fracture toughness and crack growth resistance at the tissue-level are significantly correlated to damage susceptibility at the micro-level, and mechanical inhomogeneity between lamellae and interlamellar areas at the osteonal-level. In more detail, reduced nanoelasticity inhomogeneity of lamellar/interlamellar layers within the osteons correlated to increased indentation depth at the micro-level and an overall reduction in crack-growth toughness and fracture toughness of the tissue. Our data also suggest that deterioration of bone's mechanical properties is expressed concurrently at these three levels, and that mechanical inhomogeneity between the principal structural units of the cortical tissue holds a key role on bone's toughness behaviour. We hypothesise that the reduction in nanoelasticity inhomogeneity is - at least to some extent - responsible for the inability of the microstructure to effectively adapt to the applied load, e.g. by redistributing strains, in a non-catastrophic manner preventing damage formation and propagation. Our hypothesis is further supported by synchrotron radiation micro-computed tomography (SRμCT) data, which show that failure of tougher bone specimens is governed by increased deflection of the crack path and broadly spread damage around the crack-tip. In contrast, shorter and more direct crack paths as well as less-distributed damage were evidenced during failure of the weaker specimens. Overall, this multi-scale study highlights the importance of elasticity inhomogeneity within the osteon to the damage susceptibility and consequently to the fracture resistance of the tissue.
|
Jul 2015
|
|