B18-Core EXAFS
|
Diamond Proposal Number(s):
[25120]
Open Access
Abstract: The development of multielectron redox-active cathode materials is a top priority for achieving high energy density with long cycle life in the next-generation secondary battery applications. Triggering anion redox activity is regarded as a promising strategy to enhance the energy density of polyanionic cathodes for Li/Na-ion batteries. Herein, K2Fe(C2O4)2 is shown to be a promising new cathode material that combines metal redox activity with oxalate anion (C2O42–) redox. This compound reveals specific discharge capacities of 116 and 60 mAh g–1 for sodium-ion batterie (NIB) and lithium-ion batterie (LIB) cathode applications, respectively, at a rate of 10 mA g–1, with excellent cycling stability. The experimental results are complemented by density functional theory (DFT) calculations of the average atomic charges.
|
Mar 2023
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Elan D. R.
Mistry
,
Daphné
Lubert-Perquel
,
Irena
Nevjestic
,
Giuseppe
Mallia
,
Pilar
Ferrer
,
Kanak
Roy
,
Georg
Held
,
Tian
Tian
,
Nicholas M.
Harrison
,
Sandrine
Heutz
,
Camille
Petit
Diamond Proposal Number(s):
[26511]
Open Access
Abstract: A family of boron nitride (BN)-based photocatalysts for solar fuel syntheses have recently emerged. Studies have shown that oxygen doping, leading to boron oxynitride (BNO), can extend light absorption to the visible range. However, the fundamental question surrounding the origin of enhanced light harvesting and the role of specific chemical states of oxygen in BNO photochemistry remains unanswered. Here, using an integrated experimental and first-principles-based computational approach, we demonstrate that paramagnetic isolated OB3 states are paramount to inducing prominent red-shifted light absorption. Conversely, we highlight the diamagnetic nature of O–B–O states, which are shown to cause undesired larger band gaps and impaired photochemistry. This study elucidates the importance of paramagnetism in BNO semiconductors and provides fundamental insight into its photophysics. The work herein paves the way for tailoring of its optoelectronic and photochemical properties for solar fuel synthesis.
|
Feb 2023
|
|
I11-High Resolution Powder Diffraction
|
Abstract: Solid-state magnesium electrolytes may pave the way for novel types of rechargeable, sustainable, and cheap batteries with high volumetric and gravimetric capacities. There are, however, currently no solid-state magnesium electrolytes that fulfill the requirements for solid-state battery applications. Here, we present the synthesis, structure, and properties of six new methylamine magnesium borohydride compounds, α- and β-Mg(BH4)2·6CH3NH2, Mg(BH4)2·3CH3NH2, and α-, α′- and β-Mg(BH4)2·CH3NH2. The β-Mg(BH4)2·CH3NH2 polymorph displays a record high Mg2+ ionic conductivity of σ(Mg2+) = 1.50 × 10–4 S cm–1 at room temperature. The high Mg2+ conductivity of β-Mg(BH4)·CH3NH2 is facilitated by a one-dimensional chain-like structure interconnected by weak dihydrogen bonds and dispersion interactions, forming a migration pathway across the chains. The oxidative stability of Mg(BH4)2·CH3NH2 is ∼1.2 V vs Mg/Mg2+, and the reversible plating and stripping were confirmed by cyclic voltammetry and symmetric cell cycling, revealing high stability toward magnesium electrodes for at least 50 cycles at 60 °C.
|
Jan 2023
|
|
I11-High Resolution Powder Diffraction
|
Bixian
Ying
,
Jack R.
Fitzpatrick
,
Zhenjie
Teng
,
Tianxiang
Chen
,
Tsz Woon Benedict
Lo
,
Vassilios
Siozios
,
Claire A.
Murray
,
Helen E. A.
Brand
,
Sarah
Day
,
Chiu C.
Tang
,
Robert S.
Weatherup
,
Peter
Nagel
,
Stefan
Schuppler
,
Martin
Winter
,
Karin
Kleiner
,
Michael
Merz
Diamond Proposal Number(s):
[19772]
Open Access
Abstract: The syntheses of Ni-poor (NCM111, LiNi1/3Co1/3Mn1/3O2) and Ni-rich (NCM811 LiNi0.8Co0.1Mn0.1O2) lithium transition-metal oxides (space group R3̅m) from hydroxide precursors (Ni1/3Co1/3Mn1/3(OH)2, Ni0.8Co0.1Mn0.1(OH)2) are investigated using in situ synchrotron powder diffraction and near-edge X-ray absorption fine structure spectroscopy. The development of the layered structure of these two cathode materials proceeds via two utterly different reaction mechanisms. While the synthesis of NCM811 involves a rock salt-type intermediate phase, NCM111 reveals a layered structure throughout the entire synthesis. Moreover, the necessity and the impact of a preannealing step and a high-temperature holding step are discussed.
|
Jan 2023
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[25166]
Open Access
Abstract: Cation migration on electrochemical cycling can significantly influence the performance of li-ion cathode materials. Phases of composition LiFe2–xInxSbO6 (0 < x <1) adopt crystal structures described in space group Pnnm, consisting of a hexagonally close-packed array of oxide ions, with Fe/In and Sb cations ordered on octahedral sites, and lithium cations located within partially occupied tetrahedral sites. NPD, SXRD, and 57Fe Mössbauer data indicate that on reductive lithium insertion (either chemically or electrochemically), LiFe2SbO6 is converted to Li2Fe2SbO6 accompanied by large-scale cation migration, to form a partially Fe/Li cation-ordered and Fe2+/Fe3+ charge-ordered phase from which lithium cations cannot be easily removed, either chemically or electrochemically. Partial substitution of Fe with In suppresses the degree of cation migration that occurs on lithium insertion such that no structural change is observed when LiFeInSbO6 is converted into Li1.5FeInSbO6, allowing the system to be repeatedly electrochemically cycled between these two compositions. Phases with intermediate levels of In substitution exhibit low levels of Fe migration on Li insertion and electrochemical capacities which evolve on cycling. The mechanism by which the In3+ cations suppress the migration of Fe cations is discussed along with the cycling behavior of the LiFe1.5In0.5SbO6–Li1.75Fe1.5In0.5SbO6.
|
Dec 2022
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Yajun
Yue
,
Aleksandra
Dzięgielewska
,
Man
Zhang
,
Stephen
Hull
,
Franciszek
Krok
,
Richard M.
Whiteley
,
Harold
Toms
,
Marcin
Malys
,
Xuankai
Huang
,
Marcin
Krynski
,
Ping
Miao
,
Haixue
Yan
,
Isaac
Abrahams
Diamond Proposal Number(s):
[24348]
Open Access
Abstract: The BIMEVOXes are among the best oxide ion conductors at low and intermediate temperatures. Their high conductivity is associated with local defect structure. In this work, the local structures of two BIMEVOX compositions, Bi2V0.9Ge0.1O5.45 and Bi2V0.95Sn0.05O5.475, are examined using total neutron and X-ray scattering methods, with both compositions exhibiting the ordered α-phase at 25 °C and the disordered γ-phase at 700 °C. While the diffraction data for the α-phase do not allow for the polar (C2) and nonpolar (C2/m) structures to be readily distinguished, measurements of dielectric permittivity suggest the α-phase is weakly ferroelectric in character, consistent with calculations of spontaneous polarization based on a combination of density functional calculations and machine learning methodology. Reverse Monte Carlo (RMC) analysis of total scattering data reveals Ge preferentially adopts tetrahedral geometry at both temperatures, while Sn is found to predominantly adopt octahedral coordination in the α-phase and tetrahedral coordination in the γ-phase. In all cases, V polyhedra are found to consist of tetrahedral, pentacoordinate, and octahedral geometries, as also predicted by the crystallographic analysis and confirmed by 51V solid state NMR spectroscopy. Although similar long-range structures are observed at room temperature, the oxide ion vacancy distributions were found to be quite different between the two studied compositions, with a nonrandom deficiency in vacancy pairs in the second-nearest shell along the ⟨100⟩ tetragonal direction for BIGEVOX10, compared with a long-distance (>8.0 Å) ordering of equatorial vacancies for BISNVOX05. This is attributed to the differences in the preferred coordination geometries of the substituent cations in the two systems. Impedance spectroscopy measurements reveal both compositions show high conductivity in the order of 10–1 S cm–1 at 600 °C.
|
Dec 2022
|
|
B18-Core EXAFS
|
Euan A. S.
Scott
,
Eleni
Mitoudi Vagourdi
,
Mats
Johnsson
,
Vanessa
Cascos
,
Filbin
John
,
Dave
Pickup
,
Alan V.
Chadwick
,
Hania
Djani
,
Eric
Bousquet
,
Weiguo
Zhang
,
P. Shiv
Halasyamani
,
Emma E.
Mccabe
Open Access
Abstract: Aurivillius oxides have been a research focus due to their ferroelectric properties, but by replacing oxide ions by fluoride, divalent magnetic cations can be introduced, giving Bi2MO2F4 (M = Fe, Co, and Ni). Our combined experimental and computational study on Bi2CoO2F4 indicates a low-temperature polar structure of P21ab symmetry (analogous to ferroelectric Bi2WO6) and a ferrimagnetic ground state. These results highlight the potential of Aurivillius oxide-fluorides for multiferroic properties. Our research has also revealed some challenges associated with the reduced tendency for polar displacements in the more ionic fluoride-based systems.
|
Oct 2022
|
|
I11-High Resolution Powder Diffraction
|
Robert D.
Smyth
,
Jack N.
Blandy
,
Ziyu
Yu
,
Shuai
Liu
,
Craig V.
Topping
,
Simon J.
Cassidy
,
Catherine F.
Smura
,
Daniel N.
Woodruff
,
Pascal
Manuel
,
Craig L.
Bull
,
Nicholas P.
Funnell
,
Christopher J.
Ridley
,
John E.
Mcgrady
,
Simon J.
Clarke
Diamond Proposal Number(s):
[13284, 18786, 25166]
Open Access
Abstract: Sr2NiO2Cu2Se2, comprising alternating [Sr2NiO2]2+ and [Cu2Se2]2– layers, is reported. Powder neutron diffraction shows that the Ni2+ ions, which are in a highly elongated NiO4Se2 environment with D4h symmetry, adopt a high-spin configuration and carry localized magnetic moments which order antiferromagnetically below ∼160 K in a √2a × √2a × 2c expansion of the nuclear cell with an ordered moment of 1.31(2) μB per Ni2+ ion. The adoption of the high-spin configuration for this d8 cation in a pseudo-square-planar ligand field is supported by consideration of the experimental bond lengths and the results of density functional theory (DFT) calculations. This is in contrast to the sulfide analogue Sr2NiO2Cu2S2, which, according to both experiment and DFT calculations, has a much more elongated ligand field, more consistent with the low-spin configuration commonly found for square-planar Ni2+, and accordingly, there is no evidence for magnetic moment on the Ni2+ ions. Examination of the solid solution Sr2NiO2Cu2(Se1–xSx)2 shows direct evidence from the evolution of the crystal structure and the magnetic ordering for the transition from high-spin selenide-rich compounds to low-spin sulfide-rich compounds as a function of composition. Compression of Sr2NiO2Cu2Se2 up to 7.2 GPa does not show any structural signature of a change in the spin state. Consideration of the experimental and computed Ni2+ coordination environments and their subtle changes as a function of temperature, in addition to transitions evident in the transport properties and magnetic susceptibilities in the end members, Sr2NiO2Cu2Se2 and Sr2NiO2Cu2S2, suggest that simple high-spin and low-spin models for Ni2+ may not be entirely appropriate and point to further complexities in these compounds.
|
Oct 2022
|
|
E01-JEM ARM 200CF
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[29599]
Open Access
Abstract: Solar H2O2 produced by O2 reduction provides a green, efficient, and ecological alternative to the industrial anthraquinone process and H2/O2 direct-synthesis. We report efficient photocatalytic H2O2 production at a rate of 73.4 mM h–1 in the presence of a sacrificial donor on a structurally engineered catalyst, alkali metal-halide modulated poly(heptazine imide) (MX → PHI). The reported H2O2 production is nearly 150 and >4250 times higher than triazine structured pristine carbon nitride under UV–visible and visible light (≥400 nm) irradiation, respectively. Furthermore, the solar H2O2 production rate on MX → PHI is higher than most of the previously reported carbon nitride (triazine, tri-s-triazine), metal oxides, metal sulfides, and other metal–organic photocatalysts. A record high AQY of 96% at 365 nm and 21% at 450 nm was observed. We find that structural modulation by alkali metal-halides results in a highly photoactive MX → PHI catalyst which has a broader light absorption range, enhanced light absorption ability, tailored bandgap, and a tunable band edge position. Moreover, this material has a different polymeric structure, high O2 trapping ability, interlayer intercalation, as well as surface decoration of alkali metals. The specific C≡N groups and surface defects, generated by intercalated MX, were also considered as potential contributors to the separation of photoinduced electron–hole pairs, leading to enhanced photocatalytic activity. A synergy of all these factors contributes to a higher H2O2 production rate. Spectroscopic data help us to rationalize the exceptional photochemical performance and structural characteristics of MX → PHI.
|
Jun 2022
|
|
|
Open Access
Abstract: The purification of light olefins is one of the most important chemical separations globally and consumes large amounts of energy. Porous materials have the capability to improve the efficiency of this process by acting as solid, regenerable adsorbents. However, to develop translational systems, the underlying mechanisms of adsorption in porous materials must be fully understood. Herein, we report the adsorption and dynamic separation of C2 and C3 hydrocarbons in the metal–organic framework MFM-300(In), which exhibits excellent performance in the separation of mixtures of ethane/ethylene and propyne/propylene. Unusually selective adsorption of ethane over ethylene at low pressure is observed, resulting in selective retention of ethane from a mixture of ethylene/ethane, thus demonstrating its potential for a one-step purification of ethylene (purity > 99.9%). In situ neutron powder diffraction and inelastic neutron scattering reveal the preferred adsorption domains and host–guest binding dynamics of adsorption of C2 and C3 hydrocarbons in MFM-300(In).
|
Jun 2022
|
|