I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[28534]
Open Access
Abstract: Influenza virus neuraminidase is a crucial target for protective antibodies, yet the development of recombinant neuraminidase protein as a vaccine has been held back by instability and variable expression. We have taken a pragmatic approach to improving expression and stability of neuraminidase by grafting antigenic surface loops from low-expressing neuraminidase proteins onto the scaffold of high-expressing counterparts. The resulting hybrid proteins retained the antigenic properties of the loop donor while benefiting from the high-yield expression, stability, and tetrameric structure of the loop recipient. These hybrid proteins were recognised by a broad set of human monoclonal antibodies elicited by influenza infection or vaccination, with X-ray structures validating the accurate structural conformation of the grafted loops and the enzymatic cavity. Immunisation of mice with neuraminidase hybrids induced inhibitory antibodies to the loop donor and protected against lethal influenza challenge. This pragmatic technique offers a robust solution for improving the expression and stability of influenza neuraminidase proteins for vaccine development.
|
Apr 2025
|
|
Krios II-Titan Krios II at Diamond
Krios IV-Titan Krios IV at Diamond
|
Diamond Proposal Number(s):
[30316]
Open Access
Abstract: Giant viruses of protists are a diverse and likely ubiquitous group of organisms. Here, we describe Jyvaskylavirus, the first giant virus isolated from Finland. This clade B marseillevirus was found in Acanthamoeba castellanii from a composting soil sample in Jyväskylä, Central Finland. Its genome shares similarities with other marseilleviruses. Helium ion microscopy and electron microscopy of infected cells unraveled stages of the Jyvaskylavirus life cycle. We reconstructed the Jyvaskylavirus particle to 6.3 Å resolution using cryo-electron microscopy. The ~2500 Å diameter virion displays structural similarities to other Marseilleviridae giant viruses. The capsid comprises of 9240 copies of the major capsid protein, encoded by open reading frame (ORF) 184, which possesses a double jellyroll fold arranged in trimers forming pseudo-hexameric capsomers. Below the capsid shell, the internal membrane vesicle encloses the genome. Through cross-structural and -sequence comparisons with other Marseilleviridae using AI-based software in model building and prediction, we elucidated ORF142 as the penton protein, which plugs the 12 vertices of the capsid. Five additional ORFs were identified, with models predicted and fitted into densities that either cap the capsomers externally or stabilize them internally. The isolation of Jyvaskylavirus suggests that these viruses may be widespread in the boreal environment and provide structural insights extendable to other marseilleviruses.
|
Mar 2025
|
|
I04-Macromolecular Crystallography
|
Rohan
Eapen
,
Cynthia
Okoye
,
Christopher
Stubbs
,
Marianne
Schimpl
,
Thomas
Tischer
,
Eileen
Mccall
,
Maria
Zacharopoulou
,
Fernando
Ferrer
,
David
Barford
,
David
Spring
,
Cath
Lindon
,
Christopher
Phillips
,
Laura S.
Itzhaki
Diamond Proposal Number(s):
[20015]
Open Access
Abstract: E3 ubiquitin ligases engage their substrates via ‘degrons’ - short linear motifs typically located within intrinsically disordered regions of substrates. As these enzymes are large, multi-subunit complexes that generally lack natural small-molecule ligands and are hard to drug via conventional means, alternative strategies are needed to target them in diseases, and peptide-based inhibitors derived from degrons represent a promising approach. Here we explore peptide inhibitors of Cdc20, a substrate-recognition subunit and activator of the E3 ubiquitin ligase the anaphase promoting complex/cyclosome (APC/C) that is essential in mitosis and consequently of interest as an anti-cancer target. APC/C engages substrates via degrons that include the ‘Destruction box’ (D-box) motif. We used a rational design approach to construct binders containing unnatural amino acids aimed at better filling a hydrophobic pocket on the surface of Cdc20. We confirmed binding by thermal-shift assays and surface plasmon resonance and determined the structures of a number of the Cdc20-peptide complexes. Using a cellular thermal shift assay we confirmed that the D-box peptides also bind to and stabilise Cdc20 in the cell. We found that the D-box peptides inhibit ubiquitination activity of APC/CCdc20 and are more potent than the small molecule inhibitor Apcin. Lastly, these peptides function as portable degrons capable of driving the degradation of a fused fluorescent protein. Interestingly, we find that although inhibitory activity of the peptides correlates with Cdc20-binding affinity, degradation efficacy does not, which may be due to the complex nature of APC/C regulation and effects of degron binding of subunit recruitment and conformational changes. Our study lays the groundwork for the further development of these peptides as molecular therapeutics for blocking APC/C as well as potentially also for harnessing APC/C for targeted protein degradation.
|
Jan 2025
|
|
I03-Macromolecular Crystallography
|
Aivaras
Vaškevičius
,
Denis
Baronas
,
Janis
Leitans
,
Agnė
Kvietkauskaitė
,
Audronė
Rukšėnaitė
,
Elena
Manakova
,
Zigmantas
Toleikis
,
Algirdas
Kaupinis
,
Andris
Kazaks
,
Marius
Gedgaudas
,
Aurelija
Mickevičiūtė
,
Vaida
Juozapaitienė
,
Helgi B
Schiöth
,
Kristaps
Jaudzems
,
Mindaugas
Valius
,
Kaspars
Tars
,
Saulius
Gražulis
,
Franz-Josef
Meyer-Almes
,
Jurgita
Matulienė
,
Asta
Zubrienė
,
Virginija
Dudutienė
,
Daumantas
Matulis
Open Access
Abstract: We designed novel pre-drug compounds that transform into an active form that covalently modifies particular His residue in the active site, a difficult task to achieve, and applied to carbonic anhydrase (CAIX), a transmembrane protein, highly overexpressed in hypoxic solid tumors, important for cancer cell survival and proliferation because it acidifies tumor microenvironment helping invasion and metastases processes. The designed compounds have several functionalities: 1) primary sulfonamide group recognizing carbonic anhydrases (CA), 2) high-affinity moieties specifically recognizing CAIX among all CA isozymes, and 3) forming a covalent bond with the His64 residue. Such targeted covalent compounds possess both high initial affinity and selectivity for the disease target protein followed by complete irreversible inactivation of the protein via covalent modification. Our designed prodrug candidates bearing moderately active pre-vinyl sulfone esters or weakly active carbamates optimized for mild covalent modification activity to avoid toxic non-specific modifications and selectively target CAIX. The lead inhibitors reached 2 pM affinity, highest among known CAIX inhibitors. The strategy could be used for any disease drug target protein bearing a His residue in the vicinity of the active site.
|
Nov 2024
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[14744, 9946]
Open Access
Abstract: The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, Brachydactyly B and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.
|
May 2024
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19880]
Open Access
Abstract: The bile acid sodium symporter (BASS) family transports a wide array of molecules across membranes, including bile acids in humans, and small metabolites in plants. These transporters, many of which are sodium-coupled, have been shown to use an elevator mechanism of transport, but exactly how substrate binding is coupled to sodium ion binding and transport is not clear. Here, we solve the crystal structure at 2.3 Å of a transporter from Neisseria meningitidis (ASBTNM) in complex with pantoate, a potential substrate of ASBTNM. The BASS family is characterised by two helices that cross-over in the centre of the protein in an arrangement that is intricately held together by two sodium ions. We observe that the pantoate binds, specifically, between the N-termini of two of the opposing helices in this cross-over region. During molecular dynamics simulations the pantoate remains in this position when sodium ions are present but is more mobile in their absence. Comparison of structures in the presence and absence of pantoate demonstrates that pantoate elicits a conformational change in one of the cross-over helices. This modifies the interface between the two domains that move relative to one another to elicit the elevator mechanism. These results have implications, not only for ASBTNM but for the BASS family as a whole and indeed other transporters that work through the elevator mechanism.
|
Nov 2023
|
|
I04-Macromolecular Crystallography
|
Open Access
Abstract: Ca2+/calmodulin-dependent protein kinase II (CaMKII) is essential for long-term potentiation (LTP) of excitatory synapses that is linked to learning and memory. In this study, we focused on understanding how interactions between CaMKIIα and the actin-crosslinking protein α-actinin-2 underlie long-lasting changes in dendritic spine architecture. We found that association of the two proteins was unexpectedly elevated within 2 minutes of NMDA receptor stimulation that triggers structural LTP in primary hippocampal neurons. Furthermore, disruption of interactions between the two proteins prevented the accumulation of enlarged mushroom-type dendritic spines following NMDA receptor activation. α-Actinin-2 binds to the regulatory segment of CaMKII. Calorimetry experiments, and a crystal structure of α-actinin-2 EF hands 3 and 4 in complex with the CaMKII regulatory segment, indicate that the regulatory segment of autoinhibited CaMKII is not fully accessible to α-actinin-2. Pull-down experiments show that occupation of the CaMKII substrate-binding groove by GluN2B markedly increases α-actinin-2 access to the CaMKII regulatory segment. Furthermore, in situ labelling experiments are consistent with the notion that recruitment of CaMKII to NMDA receptors contributes to elevated interactions between the kinase and α-actinin-2 during structural LTP. Overall, our study provides new mechanistic insight into the molecular basis of structural LTP and reveals an added layer of sophistication to the function of CaMKII.
|
Jul 2023
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Josephine H. R.
Maidment
,
Motoki
Shimizu
,
Adam R.
Bentham
,
Sham
Vera
,
Marina
Franceschetti
,
Apinya
Longya
,
Clare E. M.
Stevenson
,
Juan Carlos
De La Concepcion
,
Aleksandra
Bialas
,
Sophien
Kamoun
,
Ryohei
Terauchi
,
Mark J.
Banfield
Diamond Proposal Number(s):
[13467, 18565]
Open Access
Abstract: A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector’s host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.
|
May 2023
|
|
I04-Macromolecular Crystallography
|
Amit
Kumar
,
Oscar
Vadas
,
Nicolas
Dos Santos Pacheco
,
Xu
Zhang
,
Kin
Chao
,
Nicolas
Darvill
,
Helena Ø.
Rasmussen
,
Yingqi
Xu
,
Gloria Meng-Hsuan
Lin
,
Fisentzos A.
Stylianou
,
Jan Skov
Pedersen
,
Sarah L.
Rouse
,
Marc L.
Morgan
,
Dominique
Soldati-Favre
,
Stephen
Matthews
Diamond Proposal Number(s):
[23620]
Open Access
Abstract: The phylum of Apicomplexa groups intracellular parasites that employ substrate-dependent gliding motility to invade host cells, egress from the infected cells, and cross biological barriers. The glideosome-associated connector (GAC) is a conserved protein essential to this process. GAC facilitates the association of actin filaments with surface transmembrane adhesins and the efficient transmission of the force generated by myosin translocation of actin to the cell surface substrate. Here, we present the crystal structure of Toxoplasma gondii GAC and reveal a unique, supercoiled armadillo repeat region that adopts a closed ring conformation. Characterisation of the solution properties together with membrane and F-actin binding interfaces suggests that GAC adopts several conformations from closed to open and extended. A multi-conformational model for assembly and regulation of GAC within the glideosome is proposed.
|
Apr 2023
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Tamar
Skaist Mehlmam
,
Justin T.
Biel
,
Syeda Maryam
Azeem
,
Elliot R.
Nelson
,
Sakib
Hossain
,
Louise
Dunnett
,
Neil G.
Paterson
,
Alice
Douangamath
,
Romain
Talon
,
Danny
Axford
,
Helen
Orins
,
Frank
Von Delft
,
Daniel A.
Keedy
Diamond Proposal Number(s):
[15751, 18340, 23570]
Open Access
Abstract: Much of our current understanding of how small-molecule ligands interact with proteins stems from X-ray crystal structures determined at cryogenic (cryo) temperature. For proteins alone, room-temperature (RT) crystallography can reveal previously hidden, biologically relevant alternate conformations. However, less is understood about how RT crystallography may impact the conformational landscapes of protein-ligand complexes. Previously, we showed that small-molecule fragments cluster in putative allosteric sites using a cryo crystallographic screen of the therapeutic target PTP1B (Keedy et al., 2018). Here, we have performed two RT crystallographic screens of PTP1B using many of the same fragments, representing the largest RT crystallographic screens of a diverse library of ligands to date, and enabling a direct interrogation of the effect of data collection temperature on protein-ligand interactions. We show that at RT, fewer ligands bind, and often more weakly – but with a variety of temperature-dependent differences, including unique binding poses, changes in solvation, new binding sites, and distinct protein allosteric conformational responses. Overall, this work suggests that the vast body of existing cryo-temperature protein-ligand structures may provide an incomplete picture, and highlights the potential of RT crystallography to help complete this picture by revealing distinct conformational modes of protein-ligand systems. Our results may inspire future use of RT crystallography to interrogate the roles of protein-ligand conformational ensembles in biological function.
|
Mar 2023
|
|