I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Jake M.
Seymour
,
Ekaterina
Gousseva
,
Frances
Towers Tompkins
,
Lewis G.
Parker
,
Najaat O.
Alblewi
,
Coby J.
Clarke
,
Shusaku
Hayama
,
Robert G.
Palgrave
,
Roger A.
Bennett
,
Richard P.
Matthews
,
Kevin R. J.
Lovelock
Diamond Proposal Number(s):
[24305, 28565, 30597]
Open Access
Abstract: Using a combination of liquid-phase experimental X-ray spectroscopy experiments and small-scale calculations we have gained new insights into the speciation of halozincate anions in ionic liquids (ILs). Both core and valence X-ray photoelectron spectroscopy (XPS) were performed directly on the liquid-phase ILs, supplemented by Zn 1s X-ray absorption near edge structure (XANES) spectroscopy. Density functional theory (DFT) calculations were carried out on both 1- and 2- halozincate anions, in both a generalised solvation model SMD (Solvation Model based on Density) and the gas phase, to give XP spectra and total energy differences; time-dependent DFT was used to calculate XA spectra. Speciation judgements were made using a combination of the shape and width of experimental spectra, and visual matches to calculated spectra. For 2- halozincate anions, excellent matches were found between experimental and calculated XP spectra, clearly showing that only 2- halozincate anions were present at all zinc halide mole fraction, x, studied. At specific x (0.33, 0.50, 0.60) only one halozincate anion was present; equilibria of different halozincate anions at those x were not observed. All findings show that chlorozincate anion and bromozincate anion speciation matched at the same x. Based on the results, predictions are made of the halozincate anion speciation for all x up to 0.67. Caution is advised when using differences in calculated total energies obtained from DFT to judge halozincate anion speciation, even when the SMD was employed, as predictions based on total energy differences did not always match the findings from experimental and calculated spectra. Our findings clearly establish that the combination of high-quality experimental data from multiple spectroscopies and a wide range of calculated structures are essential to have high confidence in halozincate anion speciation identification.
|
Apr 2024
|
|
|
Open Access
Abstract: Poly(Ni-btt), an organometallic coordination polymer (OMCP) characterized by the coordination between benzene-1,2,4,5-tetrakis(thiolate) (btt) and Ni2+ ions, has been recognized as a promising p-type thermoelectric material. In this study, we employed a constitutional isomer based on benzene-1,2,3,4-tetrakis(thiolate) (ibtt) to generate the corresponding isomeric polymer, poly(Ni-ibtt). Comparative analysis of poly(Ni-ibtt) and poly(Ni-btt) reveals several common infrared (IR) and Raman features attributed to their similar square-planar nickel-sulfur (Ni-S) coordination. Nevertheless, these two polymer isomers exhibit substantially different backbone geometries. Poly(Ni-btt) possesses a linear backbone, whereas poly(Ni-ibtt) exhibits a more undulating, zigzag-like structure. Consequently, poly(Ni-ibtt) demonstrates slightly higher solubility and an increased bandgap in comparison to poly(Ni-btt). The most noteworthy dissimilarity, however, manifests in their thermoelectric properties. While poly(Ni-btt) exhibits p-type behaviour, poly(Ni-ibtt) demonstrates n-type carrier characteristics. This intriguing divergence prompted further investigation into the influence of OMCP backbone geometry on the electronic structure and, particularly, the thermoelectric properties of these materials.
|
Sep 2023
|
|
I18-Microfocus Spectroscopy
|
Martin V.
Appleby
,
Rory A.
Cowin
,
Iona
Ivalo
,
Samantha L.
Peralta-Arriaga
,
Craig C.
Robertson
,
Stuart
Bartlett
,
Ann
Fitzpatrick
,
Andrew
Dent
,
Gabriel
Karras
,
Sofia
Diaz-Moreno
,
Dimitri
Chekulaev
,
Julia A.
Weinstein
Diamond Proposal Number(s):
[28403, 30784]
Open Access
Abstract: The study aims to understand the role of the transient bonding in the interplay between the structural and electronic changes in heteroleptic Cu(I) diimine diphosphine complexes. This is an emerging class of photosensitisers which absorb in the red region of the spectrum, whilst retaining a sufficiently long excited state lifetime. Here, the dynamics of these complexes are explored by transient absorption (TA) and time-resolved infrared (TRIR) spectroscopy, which reveal ultrafast intersystem crossing and structural distortion occurring. Two potential mechanisms affecting excited state decay in these complexes involve a transient formation of a solvent adduct, made possible by the opening up of the Cu coordination centre in the excited state due to structural distortion, and by a transient coordination of the O-atom of the phosphine ligand to the copper center. X-ray absorption studies of the ground electronic state have been conducted as a prerequisite for the upcoming X-ray spectroscopy studies which will directly determine structural dynamics. The potential for these complexes to be used in bimolecular applications is confirmed by a significant yield of singlet oxygen production.
|
Jul 2023
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Open Access
Abstract: Noncovalent interactions are essential in the formation and properties of a diverse range of materials. However, reliably identifying the noncovalent interactions remains challenging using conventional methods such as X-ray diffraction, especially in nanocrystalline, poorly crystalline or amorphous materials which lack long-range lattice periodicity. Here, we demonstrate the accurate determinations of deviations in the local structure and tilting of aromatic rings during the temperature-induced first order structural transition in the 1:1 adduct of 4,4’-bipyridinium squarate from low temperature form HAZFAP01 to high temperature HAZFAP07. This work demonstrates how Pair Distribution Function (PDF) analyses can improve our understanding of local structural deviations resulting from noncovalent bonds and guide the development of novel functional materials.
|
Jan 2023
|
|
|
Open Access
Abstract: We present a charge density study of two linkage isomer photoswitches, [Pd(Bu4dien)(NO2)]BPh4.THF (1) and [Ni(Et4dien)(NO2)2] (2) using Hirshfeld Atom Refinement (HAR) methods implemented via the NoSpherA2 interface in Olex2. HAR is used to explore the electron density distribution in the photoswitchable molecules of 1 and 2, to gain an in-depth understanding of key bonding features and their influence on the single-crystal-to-single-crystal reaction. HAR analysis is also combined with ab initio calculations to explore the non-covalent interactions that influence physical properties of the photoswitches, such as the stability of the excited state nitrito-(η1-ONO) isomer. This insight can be fed back into the crystal engineering process to develop new and improved photoswitches that can be optimised towards specific applications.
|
Dec 2022
|
|
E01-JEM ARM 200CF
|
Naomi
Lawes
,
Isla
Gow
,
Louise R.
Smith
,
Kieran
Aggett
,
James
Hayward
,
Lara
Kabalan
,
Andrew J.
Logsdail
,
Thomas J. A.
Slater
,
Malcolm
Dearg
,
David J.
Morgan
,
Nicholas F.
Dummer
,
Stuart H.
Taylor
,
C. Richard A.
Catlow
,
Michael
Bowker
,
Graham J.
Hutchings
Diamond Proposal Number(s):
[27530]
Open Access
Abstract: A number of Pd based materials have been synthesised and evaluated as catalysts for the conversion of carbon dioxide and hydrogen to methanol, a useful platform chemical and hydrogen storage molecule. Monometallic Pd catalysts shows poor methanol selectivity, but this is improved through the formation of Pd alloys, with both PdZn and PdGa alloys showing greatly enhanced methanol productivity compared with monometallic Pd/Al2O3 and Pd/TiO2 catalysts. Catalyst characterisation shows that the 1:1 β-PdZn alloy is present in all Zn containing post-reaction samples, including PdZn/Ga2O3, while the Pd2Ga alloy formed for the Pd/Ga2O3 sample. The heats of mixing were calculated for a variety of alloy compositions with high heats of mixing calculated for both PdZn and Pd2Ga alloys, with values of ca. -0.6 eV/atom and ca. -0.8 eV/atom, respectively. However, ZnO is more readily reduced than Ga2O3, providing a possible explanation for the preferential formation of the PdZn alloy, rather than PdGa. when in the presence of Ga2O3.
|
Jun 2022
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[16243]
Open Access
Abstract: A combined high resolution X-ray photoelectron spectroscopy and X-ray standing wave study into the adsorption structure of hydrogenated graphene on Ir(111) is presented. By exploiting the unique absorption profiles and significant modulations in signal intensity found within the X-ray standing wave results, we refine the fitting of the C 1s X-ray photoelectron spectra, allowing us to disentangle the contributions from hydrogenation of graphene in different high-symmetry regions of the moiré supercell. We clearly demonstrate that hydrogenation in the FCC regions results in the formation of a graphane-like structure, giving a standalone component that is separated from the component assigned to the similar structure in the HCP regions. The contribution from dimer structures in the ATOP regions is found to be minor or negligible. This is in contrast to the previous findings where a dimer structure was assumed to contribute significantly to the sp3 part of the C 1s spectra. The corrugation of the remaining pristine parts of the H-graphene is shown to increase with the H coverage, reflecting an increasing number and size of pinning centers of the graphene to the Ir(111) substrate with increasing H exposure.
|
May 2022
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Simon
Astley
,
Di
Hu
,
Kerry
Hazeldine
,
Johnathan
Ash
,
Rachel E.
Cross
,
Simon
Cooil
,
Martin W.
Allen
,
James
Evans
,
Kelvin
James
,
Federica
Venturini
,
David C.
Grinter
,
Pilar
Ferrer
,
Rosa
Arrigo
,
Georg
Held
,
Gruffudd T.
Williams
,
D. Andrew
Evans
Diamond Proposal Number(s):
[18182]
Open Access
Abstract: Photoelectron spectroscopy is a powerful characterisation tool for semiconductor surfaces and interfaces, providing in principle a correlation between the electronic band structure and surface chemistry along with quantitative parameters such as the electron affinity, interface potential, band bending and band offsets. However, measurements are often limited to ultrahigh vacuum and only the top few atomic layers are probed. The technique is seldom applied as an in situ probe of surface processing; information is usually provided before and after processing in a separate environment, leading to a reduction in reproducibility. Advances in instrumentation, in particular electron detection has enabled these limitations to be addressed, for example allowing measurement at near-ambient pressures and the in situ, real-time monitoring of surface processing and interface formation. A further limitation is the influence of the measurement method through irreversible chemical effects such as radiation damage during X-ray exposure and reversible physical effects such as the charging of low conductivity materials. For wide-gap semiconductors such as oxides and carbon-based materials, these effects can be compounded and severe. Here we show how real-time and near-ambient pressure photoelectron spectroscopy can be applied to identify and quantify these effects, using a gold alloy, gallium oxide and semiconducting diamond as examples. A small binding energy change due to thermal expansion is followed in real-time for the alloy while the two semiconductors show larger temperature-induced changes in binding energy that, although superficially similar, are identified as having different and multiple origins, related to surface oxygen bonding, surface band-bending and a room-temperature surface photovoltage. The latter affects the p-type diamond at temperatures up to 400 °C when exposed to X-ray, UV and synchrotron radiation and under UHV and 1 mbar of O2. Real-time monitoring and near-ambient pressure measurement with different excitation sources has been used to identify the mechanisms behind the observed changes in spectral parameters that are different for each of the three materials. Corrected binding energy values aid the completion of the energy band diagrams for these wide-gap semiconductors and provide protocols for surface processing to engineer key surface and interface parameters.
|
May 2022
|
|
I09-Surface and Interface Structural Analysis
|
Matthew J.
Smiles
,
Thomas
Shalvey
,
Luke
Thomas
,
Theodore D. C.
Hobson
,
Leanne A. H.
Jones
,
Laurie
Phillips
,
Christopher
Don
,
Thomas
Beesley
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Ken
Durose
,
Jonathan D.
Major
,
Tim
Veal
Diamond Proposal Number(s):
[31170]
Open Access
Abstract: Germanium selenide (GeSe) bulk crystals, thin films and solar cells are investigated with a focus on acceptor-doping with silver (Ag) and the use of an Sb2Se3 interfacial layer. The Ag-doping of GeSe occurred by a stoichiometric melt growth technique that created Ag-doped GeSe bulk crystals. A combination of capacitance voltage measurements, synchrotron radiation photoemission spectroscopy and surface space-charge calculations indicate Ag-doping increases the hole density from 5.2×1015 cm-3 to 1.9×1016 cm-3. The melt-grown material is used as the source for thermally evaporated GeSe films within solar cells. The cell structure with the highest efficiency of 0.260% is FTO/CdS/Sb2Se3/undoped-GeSe/Au compared with solar cells without the Sb2Se3 interfacial layer or with the Ag-doped GeSe.
|
Apr 2022
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Diamond Proposal Number(s):
[27121, 24584]
Open Access
Abstract: Palladium and palladium–platinum foils were analysed using temperature-programmed near-ambient pressure X-ray photoelectron spectroscopy (TP-NAP-XPS) under methane oxidation conditions. Oxidation of palladium is inhibited by the presence of water, and in oxygen-poor environments. Pt addition further inhibits oxidation of palladium across all reaction conditions, preserving metallic palladium to higher temperatures. Bimetallic foils underwent significant restructuring under reaction conditions, with platinum preferentially migrating to the bulk under select conditions.
|
Apr 2022
|
|