I20-EDE-Energy Dispersive EXAFS (EDE)
|
Xiaoqiang
Liang
,
Sen
Wang
,
Jingyu
Feng
,
Zhen
Xu
,
Zhenyu
Guo
,
Hui
Luo
,
Feng
Zhang
,
Wen
Chen
,
Lei
Feng
,
Chengan
Wan
,
Maria-Magdalena
Titirici
Diamond Proposal Number(s):
[28663]
Abstract: Electrocatalytic oxygen evolution reaction (OER) under neutral or near-neutral conditions has attracted research interest due to its environmental friendliness and economic sustainability in comparison with currently available acidic and alkaline conditions. However, it is challenging to identify electrocatalytically active species in the OER procedure under neutral environments due to non-crystalline forms of catalysts. Crystalline metal-organic framework (MOF) materials could provide novel insights into electrocatalytical active species because of their well-defined structures. In this study, we synthesized two isostructural two-dimensional (2D) MOFs [Co(HCi)2(H2O)2·2DMF]n (Co-Ci-2D) and [Ni(HCi)2(H2O)2·2DMF]n (Ni-Ci-2D) (H2Ci = 1H-indazole-5-carboxylic acid, DMF = N, N-Dimethyl-formamide) to investigate their OER performance in a neutral environment. Our results indicate that Co-Ci-2D holds a current density of 3.93 mA cm-2 at 1.8 V vs. RHE and a OER durability superior to the benchmark catalyst IrO2. Utilizing the advantages of structural transformation of MOF materials which are easier to characterize and analyze compared to ill-defined amorphous materials, we found out that a mononuclear coordination compound [Co(HCi)2(H2O)4] (Co-Ci-mono-A) and its isomer (Co-Ci-mono-B) were proven to be active species of Co-Ci-2D in the neutral OER process. For Ni-Ci-2D, mononuclear coordination compounds similar to structures of the cobalt material (Ni-Ci-mono-A and Ni-Ci-mono-B) together with NiHPO4 formed by the precipitation were confirmed as active species for the neutral OER catalysis. Additionally, the difference in OER activities between Co-Ci-2D and Ni-Ci-2D, approximately one order of magnitude, originates primarily from the opposite tendency of bond length changes in coordination octahedron after being treated by the PBS solution. These findings contribute to a better comprehension of the OER procedure in the neutral media.
|
Apr 2023
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: A family of bacterial copper storage proteins (the Csps) possess thiolate-lined four-helix bundles whose cores can be filled with Cu(I) ions. The majority of Csps are cytosolic (Csp3s), and in vitro studies carried out to date indicate that the Csp3s from Methylosinus trichosporium OB3b (MtCsp3), Bacillus subtilis (BsCsp3), and Streptomyces lividans (SlCsp3) are alike. Bioinformatics have highlighted homologues with potentially different Cu(I)-binding properties from these characterized “classical” Csp3s. Determination herein of the crystal structure of the protein (RkCsp3) from the methanotroph Methylocystis sp. strain Rockwell with Cu(I) bound identifies this as the first studied example of a new subgroup of Csp3s. The most significant structural difference from classical Csp3s is the presence of only two Cu(I) sites at the mouth of the bundle via which Cu(I) ions enter and leave. This is due to the absence of three Cys residues and a His-containing motif, which allow classical Csp3s to bind five to six Cu(I) ions in this region. Regardless, RkCsp3 exhibits rapid Cu(I) binding and the fastest measured Cu(I) removal rate for a Csp3 when using high-affinity ligands as surrogate partners. New experiments on classical Csp3s demonstrate that their His-containing motif is not essential for fast Cu(I) uptake and removal. Other structural features that could be important for these functionally relevant in vitro properties are discussed.
|
Apr 2023
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[18786]
Open Access
Abstract: The crystallization of a new series of A-site substituted lanthanum ferrite materials (La1–xREx)FeO3 was explored by the hydrothermal method at 240 °C, for rare earth (RE) = Nd, Sm, Gd, Ho, Er, Yb, and Y, with 0 ≤ x ≤ 1. The effect of elemental substitution on the morphological, structural, and magnetic properties of the materials was studied using high-resolution powder X-ray diffraction, energy dispersive spectroscopy (EDS) on the scanning electron microscope, Raman spectroscopy, and SQUID magnetometry. If the radius of the La3+ and the substituent ions is similar, such as for Nd3+, Sm3+, and Gd3+, homogeneous solid solutions are formed, with the orthorhombic GdFeO3-type structure, and a continuous evolution of Raman spectra with composition and distinct magnetic behavior from the end members. When the radius difference between substituents and La3+ is large, such as for Ho3+, Er3+, Yb3+, and Y3+, then instead of forming solid solutions, crystallization in separate phases is found. However, low levels of element mixing are found and intergrowths of segregated regions give composite particles. In this case, the Raman spectra and magnetic behavior are characteristic of mixtures of phases, while EDS shows distinctive elemental segregation. A-site replacement induces an evolution in the crystallite shape with an increasing amount of substituent ions and this is most evident for RE = Y from cube-shaped crystals seen for LaFeO3 to multipodal crystals for (La1–xYx)FeO3, providing evidence for a phase-separation-driven evolution of morphology.
|
Mar 2023
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[28349]
Open Access
Abstract: Single-source precursors are ubiquitous in a number of areas of chemistry and material science due to their ease of use and wide range of potential applications. The development of new single-source precursors is essential in providing entries to new areas of chemistry. In this work, we synthesize nine new structurally related bimetallic metal-zirconium alkoxides, which can be used as single-source precursors to zirconia-based materials. Detailed analysis of the structures of these complexes provides important insights into the main factors influencing their aggregation. Investigation of the thermal decomposition of these species by TGA, PXRD, SEM, and EDS reveals that they can be used to produce bimetal oxides, such as Li2ZrO3, or a mixture of metal oxides, such as CuO and ZrO2. Significantly, these studies show that thermodynamically unstable forms of zirconia, such as the tetragonal phase, can be stabilized by metal doping, providing the promise for targeted deposition of zirconia materials for specific applications.
|
Nov 2022
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Open Access
Abstract: In this study, we carried out a detailed investigation of the photoluminescence of Mn4+ in Ga2O3–Al2O3 solid solutions as a function of the chemical composition, temperature, and hydrostatic pressure. For this purpose, a series of (Al1–xGax)2O3:Mn4+,Mg phosphors (x = 0, ..., 0.1.0) were synthesized and characterized for the first time. A detailed crystal structure analysis of the obtained materials was done by the powder X-ray diffraction technique. The results of the crystal structure and luminescence studies evidence the transformation of the ambient-pressure-synthesized material from the rhombohedral (α-type) to monoclinic (β-type) phase as the Ga content exceeds 15%. Spectroscopic features of the Mn4+ deep-red emission, including the temperature-dependent emission efficiency and decay time, as well as the possibility of their tuning through chemical pressure in each of these two phases were examined. Additionally, it has been shown that the application of hydrostatic pressure of ≥19 GPa allows one to obtain a corundum-like α-Ga2O3:Mn4+ phase. The luminescence properties of this material were compared with β-Ga2O3:Mn4+, which is normally synthesized at ambient pressure. Finally, we evaluated the possibility of application of the studied phosphor materials for low-temperature luminescence thermometry.
|
Oct 2022
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[26234, 31055]
Open Access
Abstract: A cubic tin(II) germanate, α-Sn6GeO8 (space group F4̅3m, a = 10.52521(2) Å, and Z = 4), has been synthesized by both regular hydrothermal and microwave-assisted hydrothermal methods, and the crystal structure of this material has been solved by Rietveld refinement of synchrotron powder X-ray diffraction (PXRD) data. The crystal structure is analogous to α-Sn6SiO8 and is therefore related to the zinc blende structure comprising a face-centered cubic array of [Sn6O8]4– anionic clusters with Ge4+ cations occupying half of the tetrahedral holes. Variable-temperature PXRD has revealed that tin(II) germanate has high thermal stability: remaining stable at 950 K and mostly decomposing over the range 984–1034 K. The tin(II) germanate has been further characterized by X-ray fluorescence (XRF), Raman, and diffuse reflectance (DR) UV–vis spectroscopies. In addition, variable-temperature PXRD studies have revealed the formation of a tetragonal tin(II) silicate polymorph, γ-Sn6SiO8 (space group I4̅, a = 7.30414(6) Å, c = 10.53731(6) Å, and Z = 2), at temperatures below 170 K. The crystal structure of γ-Sn6SiO8 has been elucidated by Rietveld refinement. While a transition to a tetragonal polymorph is observed upon cooling α-Sn6SiO8, no corresponding transition is observed for α-Sn6GeO8, which retains its cubic structure over the probed temperature range.
|
Sep 2022
|
|
I09-Surface and Interface Structural Analysis
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[29451]
Abstract: Topochemical reduction of the cation-disordered
perovskite oxides LaCo0.5Rh0.5O3 and LaNi0.5Rh0.5O3 with Zr yields
the partially anion-vacancy ordered phases LaCo0.5Rh0.5O2.25 and
LaNi0.5Rh0.5O2.25, respectively. Neutron diffraction and Hard X-ray
photoelectron spectroscopy (HAXPES) measurements reveal that
the anion-deficient phases contain Co1+/Ni1+ and a 1:1 mixture of
Rh1+ and Rh3+ cations within a disordered array of apex-linked
MO4 square-planar and MO5 square-based pyramidal coordination
sites. Neutron diffraction data indicate that LaCo0.5Rh0.5O2.25
adopts a complex antiferromagnetic ground state, which is the
sum of a C-type ordering (mM5
+) of the xy-components of the Co
spins and a G-type ordering (mΓ1
+) of the z-components of the Co
spins. On warming above 75 K, the magnitude of the mΓ1
+
component declines, attaining a zero value by 125 K, with the magnitude of the mM5
+ component remaining unchanged up to
175 K. This magnetic behavior is rationalized on the basis of the differing d-orbital fillings of the Co1+ cations in MO4 square-planar
and MO5 square-based pyramidal coordination sites. LaNi0.5Rh0.5O2.25 shows no sign of long-range magnetic order at 2 K − behavior
that can also be explained on the basis of the d-orbital occupation of the Ni1+ centers.
|
Sep 2022
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[30086]
Abstract: Oxides exhibiting the scheelite-type structure are an important class of functional materials with notable applications in photocatalysis, luminescence, and ionic conductivity. Like all materials, understanding their atomic structure is fundamental to engineering their physical properties. This study outlines a detailed structural investigation of the scheelite-type oxide RbReO4, which exhibits a rare long-range phase transition from I41/a to I41/amd upon heating. Additionally, in the long-range I41/a model, the Re–O tetrahedral distance undergoes significant contraction upon warming. Recent studies of other scheelite oxides have attributed this apparent contraction to incoherent local-scale tetrahedral rotations. In this study, we use X-ray pair distribution function analysis to show that RbReO4 undergoes a unique symmetry-lowering process on the local scale, which involves incoherent tetrahedral displacements. The rare I41/a to I41/amd long-range phase transition was found to occur via a change from static to dynamic disorder on the local scale, which is due to the combination of the size of the A-site cation and lattice expansion. This demonstrates how careful manipulation of the ionic radius of the A-site in the scheelite structure can be used to induce local-scale disorder, which has valuable implications for tailoring the physical properties of related materials.
|
Sep 2022
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[18786, 25166]
Open Access
Abstract: Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO2As4 octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3]+ layers and Cr2+ ions in CrAs4 tetrahedra in [CrAs]− layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs]− layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3]+ layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr2+ moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Néel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.
|
Jul 2022
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[22411]
Abstract: The preparation of novel efficient catalysts─that could be applicable in industrially important chemical processes─has attracted great interest. Small subnanometer metal clusters can exhibit outstanding catalytic capabilities, and thus, research efforts have been devoted, recently, to synthesize novel catalysts bearing such active sites. Here, we report the gram-scale preparation of Ag20 subnanometer clusters within the channels of a highly crystalline three-dimensional anionic metal–organic framework, with the formula [Ag20]@AgI2NaI2{NiII4[CuII2(Me3mpba)2]3}·48H2O [Me3mpba4– = N,N′-2,4,6-trimethyl-1,3-phenylenebis(oxamate)]. The resulting crystalline solid catalyst─fully characterized with the help of single-crystal X-ray diffraction─exhibits high catalytic activity for the catalytic Buchner ring expansion reaction.
|
Jul 2022
|
|