I03-Macromolecular Crystallography
|
Patrick Y. A.
Reinke
,
Robin S.
Heiringhoff
,
Theresia
Reindl
,
Karen
Baker
,
Manuel H.
Taft
,
Alke
Meents
,
Daniel P.
Mulvihill
,
Owen R.
Davies
,
Roman
Fedorov
,
Michael
Zahn
,
Dietmar J.
Manstein
Diamond Proposal Number(s):
[35775]
Open Access
Abstract: Cables formed by head-to-tail polymerization of tropomyosin, localized along the length of sarcomeric and cytoskeletal actin filaments, play a key role in regulating a wide range of motile and contractile processes. The stability of tropomyosin cables, their interaction with actin filaments and the functional properties of the resulting co-filaments are thought to be affected by N-terminal acetylation of tropomyosin. Here, we present high–resolution structures of cables formed by acetylated and unacetylated Schizosaccharomyces pombe tropomyosin orthologue TpmCdc8. The crystal structures represent different types of cables, each consisting of TpmCdc8 homodimers in a different conformation. The structures show how the interactions of the residues in the overlap junction contribute to cable formation and how local structural perturbations affect the conformational dynamics of the protein and its ability to transmit allosteric signals. In particular, N-terminal acetylation increases the helicity of the adjacent region, which leads to a local reduction in conformational dynamics and consequently to less fraying of the N-terminal region. This creates a more consistent complementary surface facilitating the formation of specific interactions across the overlap junction.
|
Oct 2024
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9306, 12346, 15613]
Open Access
Abstract: Dynamic ADP-ribosylation signalling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species and infection. In some pathogenic microbes the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host’s innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterise the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.
|
Sep 2024
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[23269]
Open Access
Abstract: Cytochromes P450 (P450s) are a superfamily of heme-containing enzymes possessing a broad range of monooxygenase activities. One such activity is O-demethylation, an essential and rate-determining step in emerging strategies to valorize lignin that employ carbon-carbon bond cleavage. We recently identified PbdA, a P450 from Rhodococcus jostii RHA1, and PbdB, its cognate reductase, which catalyze the O-demethylation of para-methoxylated benzoates (p-MBAs) to initiate growth of RHA1 on these compounds. PbdA had the highest affinity (Kd = 3.8 ± 0.6 μM) and apparent specificity (kcat/KM = 20 000 ± 3 000 M-1 s-1) for p-MBA. The enzyme also O-demethylated two related lignin-derived aromatic compounds with remarkable efficiency: veratrate and isovanillate. PbdA also catalyzed the hydroxylation and dehydrogenation of p-EB even though RHA1 did not grow on this compound. Atomic-resolution structures of PbdA in complex with p-MBA, p-EB and veratrate revealed a cluster of three residues that form hydrogen bonds with the substrates’ carboxylate: Ser87, Ser237 and Arg84. Substitution of these residues resulted in lower affinity and O-demethylation activity on p-MBA as well as increased affinity for the acetyl analogue, p-methoxyacetophenone. The S87A and S237A variants of PbdA also catalyzed the O-demethylation of an aldehyde analogue of p-MBA, p-methoxy-benzaldehyde, while the R84M variant did not, despite binding this compound with high affinity. These results suggest that Ser87, Ser237 and Arg84 are not only important determinants of specificity but also help to orientate that substrate correctly in the active site. This study facilitates the design of biocatalysts for lignin valorization.
|
Sep 2024
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[24505, 29178]
Open Access
Abstract: Human complement factor H (CFH) plays a central role in regulating activated C3b to protect host cells. CFH contain 20 short complement regulator (SCR) domains and eight N-glycosylation sites. The N-terminal SCR domains mediate C3b degradation while the C-terminal CFH domains bind to host cell surfaces to protect these. Our earlier study of Pichia-generated CFH fragments indicated a self-association site at SCR-17/18 that comprises a dimerization site for human factor H. Two N-linked glycans are located on SCR-17 and SCR-18. Here, when we expressed SCR-17/18 without glycans in an E. coli system, analytical ultracentrifugation showed that no dimers were now formed. To investigate this novel finding, full-length CFH and its C-terminal fragments were purified from human plasma and Pichia pastoris respectively, and their glycans were enzymatically removed using PNGase F. Using size-exclusion chromatography, mass spectrometry, and analytical ultracentrifugation, SCR-17/18 from Pichia showed notably less dimer formation without its glycans, confirming that the glycans are necessary for the formation of SCR-17/18 dimers. By surface plasmon resonance, affinity analyses interaction showed decreased binding of deglycosylated full-length CFH to immobilised C3b, showing that CFH glycosylation enhances the key CFH regulation of C3b. We conclude that our study revealed a significant new aspect of CFH regulation based on its glycosylation and its resulting dimerisation.
|
Aug 2024
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Open Access
Abstract: Transthyretin (TTR) is a homotetrameric protein involved in the transport of thyroxine. More than 150 different mutations have been described in the TTR gene, several of them associated with familial amyloid cardiomyopathy (FAC). Recently, our group described a new variant of TTR in Brazil, namely A39D-TTR, which causes a severe cardiac condition. Position 39 is in the AB loop, a region of the protein that is located within the thyroxine-binding channels and is involved in tetramer formation. In the present study we solved the structure and characterize the thermodynamic stability of this new variant of TTR using urea and high hydrostatic pressure (HHP). Interestingly, during the process of purification, A39D-TTR turned out to be a dimer and not a tetramer, a variation that might be explained by the close contact of the four aspartic acids at position 39, where they face each other inside the thyroxine channel. In the presence of sub-denaturing concentrations of urea, bis-ANS binding and dynamic light scattering revealed A39D-TTR in the form of a molten-globule dimer. Co-expression of A39D and WT isoforms in the same bacterial cell did not produce heterodimers or heterotetramers, suggesting that somehow a negative charge at the AB loop precludes tetramer formation. A39D-TTR proved to be highly amyloidogenic, even at mildly acidic pH values where WT-TTR does not aggregate. Interestingly, despite being a dimer, aggregation of A39D-TTR was inhibited by diclofenac, which binds to the thyroxine channel in the tetramer, suggesting the existence of other pockets in A39D-TTR able to accommodate this molecule.
|
Jun 2024
|
|
I04-Macromolecular Crystallography
|
Open Access
Abstract: FtsZ, the tubulin homolog essential for bacterial cell division, assembles as Z-ring at the division site, and directs peptidoglycan synthesis by treadmilling. It is unclear how FtsZ achieves its kinetic polarity that drives treadmilling. To obtain insights into fundamental features of FtsZ assembly dynamics independent of peptidoglycan synthesis, we carried out the structural and biochemical characterization of FtsZ from the cell wall-less bacteria, Spiroplasma melliferum (SmFtsZ). Interestingly the structures of SmFtsZ, determined in GDP and GMPPNP bound form, were captured as domain swapped dimers. SmFtsZ was found to be a slower GTPase and has higher critical concentration (CC) for polymerization compared to Escherichia coli FtsZ (EcFtsZ). In FtsZs, a conformational switch from R-state (close) to T-state (open) favors polymerization. We identified a residue, Phe224, located at the interdomain cleft of SmFtsZ, which is crucial for R- to T-state transition. The mutation F224M in SmFtsZ cleft resulted in higher GTPase activity and lower CC, whereas the corresponding M225F in EcFtsZ resulted in cell division defects in E. coli. Our results demonstrate that relative rotation of the domains is a rate-limiting step of polymerization and that the dynamics of the interdomain rotation is important for the assembly of FtsZ filament. Our structural analysis of interdomain interactions suggests that this step is plausibly triggered upon addition of a GTP-bound monomer to the filament through interaction of the preformed N-terminal domain (NTD). Hence, the addition of monomers to the NTD-exposed end of filament is slower in comparison to the C-terminal domain (CTD) end, thus explaining kinetic polarity. In summary, the study sheds light on the molecular mechanisms underlying FtsZ assembly dynamics and highlights the importance of interdomain interactions, conformational changes, and specific residues in regulating FtsZ polymerization, which are crucial for bacterial cell division.
|
May 2024
|
|
I03-Macromolecular Crystallography
|
Sergei
Pomyalov
,
Conceição A.
Minetti
,
David P.
Remeta
,
Radha
Bonala
,
Francis
Johnson
,
Irina
Zaitseva
,
Charles
Iden
,
Urszula
Golebiewska
,
Kenneth J.
Breslauer
,
Gil
Shoham
,
Viktoriya S.
Sidorenko
,
Arthur P.
Grollman
Open Access
Abstract: Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry (ITC) and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. Whereas AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.
|
May 2024
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[29835]
Open Access
Abstract: The IgG-specific endoglycosidases EndoS and EndoS2 from Streptococcus pyogenes can remove conserved N-linked glycans present on the Fc region of host antibodies to inhibit Fc-mediated effector functions. These enzymes are therefore being investigated as therapeutics for suppressing unwanted immune activation, and have additional application as tools for antibody glycan remodelling. EndoS and EndoS2 differ in Fc glycan substrate specificity due to structural differences within their catalytic glycosyl hydrolase domains. However, a chimeric EndoS enzyme with a substituted glycosyl hydrolase from EndoS2 loses catalytic activity, despite high structural homology between the two enzymes, indicating either mechanistic divergence of EndoS and EndoS2, or improperly-formed domain interfaces in the chimeric enzyme. Here, we present the crystal structure of the EndoS2-IgG1 Fc complex determined to 3.0 Å resolution. Comparison of complexed and unliganded EndoS2 reveals relative reorientation of the glycosyl hydrolase, leucine-rich repeat and hybrid immunoglobulin domains. The conformation of the complexed EndoS2 enzyme is also different when compared to the earlier EndoS-IgG1 Fc complex, and results in distinct contact surfaces between the two enzymes and their Fc substrate. These findings indicate mechanistic divergence of EndoS2 and EndoS. It will be important to consider these differences in the design of IgG-specific endoglycosidases, developed to enable customisable antibody glycosylation.
|
Apr 2024
|
|
|
Jessica F.
Calver
,
Nimesh R.
Parmar
,
Gemma
Harris
,
Ryan M.
Lithgo
,
Panayiota
Stylianou
,
Fredrik R.
Zetterberg
,
Bibek
Gooptu
,
Alison C.
Mackinnon
,
Stephen B.
Carr
,
Lee A.
Borthwick
,
David J.
Scott
,
Iain D.
Stewart
,
Robert J.
Slack
,
R. Gisli
Jenkins
,
Alison E.
John
Open Access
Abstract: Integrin-mediated activation of the pro-fibrotic mediator transforming growth factor-β1 (TGF-β1), plays a critical role in idiopathic pulmonary fibrosis (IPF) pathogenesis. Galectin-3 is believed to contribute to the pathological wound healing seen in IPF, although its mechanism of action is not precisely defined. We hypothesised that galectin-3 potentiates TGF-β1 activation and/or signaling in the lung to promote fibrogenesis. We show that galectin-3 induces TGF-β1 activation in human lung fibroblasts (HLFs) and specifically that extracellular galectin-3 promotes oleoyl-L-α-lysophosphatidic acid sodium salt (LPA)-induced integrin-mediated TGF-β1 activation. Surface plasmon resonance (SPR) analysis confirmed that galectin-3 binds to αv integrins, αvβ1, αvβ5 and αvβ6 and to the TGFβRII subunit in a glycosylation-dependent manner. This binding is heterogeneous and not a 1:1 binding stoichiometry. Binding interactions were blocked by small molecule inhibitors of galectin-3 which target the carbohydrate recognition domain. Galectin-3 binding to β1 integrin was validated in vitro by co-immunoprecipitation in HLFs. Proximity ligation assays indicated galectin-3 and β1 integrin colocalize closely (≤40 nm) on the cell surface, that colocalization is increased by TGF-β1 treatment and blocked by galectin-3 inhibitors. In the absence of TGF-β1 stimulation, colocalization was detectable only in HLFs from IPF patients suggesting the proteins are inherently more closely associated in the disease state. Galectin-3 inhibitor treatment of precision cut lung slices from IPF patients reduced Col1a1, TIMP1 and HA secretion to a similar degree as TGF-β type I receptor inhibitor. These data suggest galectin-3 promotes TGF-β1 signaling and may induce fibrogenesis by interacting directly with components of the TGF-β1 signaling cascade.
|
Apr 2024
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9951]
Open Access
Abstract: Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Due to their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared to other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family, and is similar to the structure of WH2 domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer-binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.
|
Feb 2024
|
|