I10-Beamline for Advanced Dichroism
|
Diamond Proposal Number(s):
[22157]
Open Access
Abstract: Tunnel junctions based on Fe storing globular proteins are an interesting class of biomolecular tunnel junctions due to their tunable Fe ion loading, symmetrical structure and thermal stability, and are therefore attractive to study the mechanisms of charge transport (CT) at the molecular level. This paper describes a temperature-induced change in the CT mechanism across junctions with large globular (∼25 nm in diameter) E2-proteins bioengineered with Fe-binding peptides from ferritin (E2-LFtn) to mineralise Fe ions in the form of iron oxide nanoparticles (NPs) inside the protein's cavity. The iron oxide NPs provide accessible energy states that support high CT rates and shallow activation barriers. Interestingly, the CT mechanism changes abruptly, but reversibly, from incoherent tunnelling (which is thermally activated) to coherent tunnelling (which is activationless) across the E2-LFtn-based tunnel junctions with the highest Fe ion loading at a temperature of 220–240 K. During this transition the current density across the junctions increases by a factor of 13 at an applied voltage of V = −0.8 V. X-ray absorption spectroscopy indicates that the iron oxide NPs inside the E2-LFtn cages undergo a reversible phase transition; this phase transition opens up new a tunnelling pathway changing the mechanism of CT from thermally activated to activationless tunnelling despite the large size of the E2-LFtn and associated distance for tunnelling.
|
Mar 2021
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Lydia
Briggs
,
Ruth
Newby
,
Xue
Han
,
Christopher
Morris
,
Mathew
Savage
,
Cristina
Perez
,
Timothy L.
Easun
,
Mark
Frogley
,
Gianfelice
Cinque
,
Claire A.
Murray
,
Chiu C.
Tang
,
Sihai
Yang
,
Junliang
Sun
,
Martin
Schroeder
Diamond Proposal Number(s):
[22137, 22138]
Open Access
Abstract: We report the adsorption of C2H2, CO2 and SO2 in a new, ultra-stable Cr(III)-based MOF, MFM-300(Cr), {[Cr2(OH)2(L)], H4L = biphenyl-3,3',5,5'-tetracarboxylic acid}. MFM-300(Cr) shows uptakes of 7.37, 7.73 and 8.59 mmol g-1 for CO2, C2H2 and SO2, respectively, at 273 K, 1.0 bar, and shows a higher selectivity for SO2/CO2 compared with the Al(III) analogue MFM-300(Al) (selectivity of 79 vs. 45). In order to monitor the effects of changing metal centre on gas uptake and to integrate the properties of the homometallic analogues, the mixed metal MFM-300(Al0.67Cr0.33), [Al1.34Cr0.66(OH)2L] has been synthesised. In situ synchrotron micro-FTIR spectroscopy has identified distinct CO2 binding environments on Al-O(H)-Al, Cr-O(H)-Cr and Al-O(H)-Cr bridges in MFM-300(Al0.67Cr0.33), and we have determined the binding domains for these gases by in situ synchrotron X-ray diffraction in both MFM-300(Cr) and MFM-300(Al0.67Cr0.33). The capability of these materials for gas separation has been confirmed by dynamic breakthrough experiments. The incorporation of Al(III) and Cr(III) within the same framework allows tuning of the host-guest and guest-guest interactions within these functional porous materials.
|
Feb 2021
|
|
I07-Surface & interface diffraction
|
Alberto
Privitera
,
Ross
Warren
,
Giacomo
Londi
,
Pascal
Kaienburg
,
Junjie
Liu
,
Andreas
Sperlich
,
Andreas E.
Lauritzen
,
Oliver
Thimm
,
Arzhang
Ardavan
,
David
Beljonne
,
Moritz
Riede
Diamond Proposal Number(s):
[20426]
Open Access
Abstract: We use the electron spin as a probe to gain insight into the mechanism of molecular doping in a p-doped zinc phthalocyanine host across a broad range of temperatures (80–280 K) and doping concentrations (0–5 wt% of F6-TCNNQ). Electron paramagnetic resonance (EPR) spectroscopy discloses the presence of two main paramagnetic species distinguished by two different g-tensors, which are assigned based on density functional theory calculations to the formation of a positive polaron on the host and a radical anion on the dopant. Close inspection of the EPR spectra shows that radical anions on the dopants couple in an antiferromagnetic manner at device-relevant doping concentrations, thereby suggesting the presence of dopant clustering, and that positive polarons on the molecular host move by polaron hopping with an activation energy of 5 meV. This activation energy is substantially smaller than that inferred from electrical conductivity measurements (∼233 meV), as the latter also includes a (major) contribution from charge-transfer state dissociation. It emerges from this study that probing the electron spin can provide rich information on the nature and dynamics of charge carriers generated upon doping molecular semiconductors, which could serve as a basis for the design of the next generation of dopant and host materials.
|
Feb 2021
|
|
B18-Core EXAFS
|
Abstract: The design of selective and efficient catalysts for electrochemical CO2 reduction is highly desirable yet still challenging, in particular, if the aim is to make them binder-free and self-standing. Here, we report a new and straightforward strategy to incorporate Ni single atoms into a commercially available carbon paper to prepare a self-standing electrode. This is accomplished by consecutive acid activation, adsorption of Ni2+ ions, and pyrolysis steps. Structural characterizations and calculations based on density functional theory consistently suggest that the Ni single atoms are coordinated with three N and one S atoms on the carbon paper. When used for CO2 electroreduction, the electrode exhibits an optimal selectivity (91%), activity (3.4 mA cm−2), and stability (at least 14 h) for CO production in water at an overpotential of 660 mV. This report may inspire the design and incorporation of single atoms of various metal types into carbon papers, or other kinds of carbon substrates, for a wide range of electrocatalytic processes.
|
Dec 2020
|
|
B18-Core EXAFS
E01-JEM ARM 200CF
|
Diamond Proposal Number(s):
[23723, 17198]
Abstract: The general and cost-effective synthesis of single atom electrocatalysts (SAECs) still remains a great challenge. Herein, we report a general synthetic protocol for the synthesis of SAECs via a simple condensation–carbonization process, in which furfural and cyanamide were condensation polymerized in the presence of polystyrene nanospheres and metal ions, followed by a pyrolysis to N-doped carbon nanosheet (NCNS) supported SAECs. Six types of SAECs containing platinum, palladium, gold, nickel, cobalt and iron were synthesized to demonstrate the generality of the synthesis protocol. This methodology affords a facile solution to the trade-off between support conductivity and metal loading of SAECs by optimizing the ratio of carbon/nitrogen precursors, i.e., furfural and cyanamide. The presence of single metal atoms was confirmed by high-angle annular dark field scanning transmission electron microscopy and X-ray absorption fine structure measurements. The three-dimensional distribution of single platinum atoms was vividly revealed by depth profile analysis using a scanning transmission electron microscope. The resulting SAECs showed excellent performance for glycerol electro-oxidation and water splitting in alkaline solutions. Notably, Pt/NCNSs possessed an unprecedent mass-normalized current density of 5.3 A per milligram of platinum, which is 32 times that of the commercial Pt/C catalyst. Density functional theory calculations were conducted to reveal the adsorption behavior of glycerol over the SAECs. Using Ni/NCNSs and Co/NCNSs as anodic and cathodic electrocatalysts, we constructed a solar panel powered electrolytic cell for overall water splitting, leading to an overall energy efficiency of 8.8%, which is among the largest solar-to-hydrogen conversion efficiencies reported in the literature.
|
Nov 2020
|
|
E01-JEM ARM 200CF
|
Yiding
Jiao
,
Liqun
Kang
,
Jasper
Berry-gair
,
Kit
Mccoll
,
Jianwei
Li
,
Haobo
Dong
,
Hao
Jiang
,
Ryan
Wang
,
Furio
Corà
,
Dan J. L.
Brett
,
Guanjie
He
,
Ivan
Parkin
Diamond Proposal Number(s):
[24450]
Open Access
Abstract: The primary issue faced by MnO2 cathode materials for aqueous Zn-ion batteries (AZIBs) is the occurrence of structural transformations during cycling, resulting in unstable capacity output. Pre-intercalating closely bonded ions into the MnO2 structures has been demonstrated as an effective approach to combat this. However, mechanisms of the pre-intercalation remain unclear. Herein, two distinct δ-MnO2 (K0.28MnO2·0.1H2O and K0.21MnO2·0.1H2O) are prepared with varying amounts of pre-intercalated K+ and applied as cathodes for AZIBs. The as-prepared K0.28MnO2·0.1H2O cathodes exhibit relatively high specific capacity (300 mA h g−1 at 100 mA g−1), satisfactory rate performance (35% capacity recovery at 5 A g−1) and competent cyclability (ca. 95% capacity retention after 1000 cycles at 2 A g−1), while inferior cyclability and rate performance are observed in K0.21MnO2·0.1H2O. A stable δ-MnO2 phase is observed upon cycling, with the reversible deposition of Zn4SO4(OH)6·5H2O (ZSH), ion migration between electrodes and synchronous transition of Mn valence states. This work firstly and systematically reveals the role of the pre-intercalated ions via density functional theory simulations and show that above a threshold K/Mn ratio of ca. 0.26, the K ions suppress structural transformations by stabilizing the δ phase. To demonstrate its commercial potential, AZIBs with high-loading active materials are fabricated, which deliver adequate energy and power densities compared with most commercial devices.
|
Nov 2020
|
|
B18-Core EXAFS
|
Wolfgang
Bensch
,
Jonas
Van Dinter
,
Kevin
Synnatschke
,
Tobias
Engesser
,
Sylvio
Indris
,
Niklas
Wolff
,
Ole
Gronenberg
,
Martin
Etter
,
Giannantonio
Cibin
,
Lorenz
Kienle
,
Claudia
Backes
Diamond Proposal Number(s):
[20060]
Abstract: The layered compound Ni2P2S6 was electrochemically characterized for application as anode material in sodium-ion batteries (SIBs). A high reversible capacity of 621 mAh g 1 at 1 A g 1 was achieved after 190 cycles. The investigation of the complex reaction mechanism of the conversion reaction was performed applying complementary techniques including X-ray powder diffraction, pair distribution function analyses, X-ray absorption spectroscopy, 19F/23Na/31P MAS NMR, TEM and nano-EDX. The results highlight that Na uptake for up to 5 Na/formula unit (f.u.) led to reduction of Ni2+ to metallic Ni nanoparticles and concomitant formation of an intermediate compound Na4P2S6. Increasing the Na content to 12 Na/f.u. generates nanocrystalline Na2S, which is accompanied by loss of the long-range order of the pristine sample. In the completely discharged state elemental Ni and Na2S are present, but in contrast to literature reports, no evidence for the formation of NaxP phases was found. During the charge process, Ni3S2 is formed upon the release of ~11.7 Na/f.u. A very high specific capacity of 621 mAh g 1 at 1.0 A g 1 is obtained after 190 cycles, and Coulombic efficiencies reach nearly 100% after the 3rd cycle.
|
Oct 2020
|
|
|
Open Access
Abstract: Nine members of two contiguous solid solutions, Ba3Sc2−xInxO5Cu2S2 and Ba3In2O5Cu2S2−ySey (x, y = 0, 0.5, 1, 1.5 and 2), were synthesised at temperatures between 800 °C and 900 °C by stoichiometric combination of binary precursors. Their structures were determined by Rietveld refinement of X-ray powder diffraction data and found to adopt the SmNi3Ge3 structure with I4/mmm symmetry. Approximate Vegard law relationships were found within each solution between the lattice parameters and composition, with an observed cell volume of 466.4 Å3 for Ba3Sc2O5Cu2S2 increasing to 481.0 Å3 for Ba3In2O5Cu2S2 and finally to 499.0 Å3 for Ba3In2O5Cu2Se2. In the first solid solution, this volume increase is driven by the replacement of scandium by the larger indium ion, generating increased strain in the copper chalcogenide layer. In the second solution the substitution into the structure of the larger selenium drives further volume expansion, while relieving the strain in the copper chalcogenide layer. Band gaps were estimated from reflectance spectroscopy and these were determined to be 3.3 eV, 1.8 eV, and 1.3 eV for the three end members Ba3Sc2O5Cu2S2, Ba3In2O5Cu2S2, and Ba3Sc2In2O5Cu2Se2, respectively. For the intermediate compositions a linear relationship between band gap size and composition was observed, driven in the first solution by the introduction of the more electronegative indium lowering the conduction band minimum and in the second solution by the substitution of the electropositive selenium raising the valance band maximum. Photocatalytic activity was observed in all samples under solar simulated light, based on a dye degradation test, with the exception of Ba3In2O5Cu2Se1.5S0.5. The most active sample was found to be Ba3Sc2O5Cu2S2, the material with the largest band gap.
|
Oct 2020
|
|
|
Zewei
Li
,
Seán R.
Kavanagh
,
Mari
Napari
,
Robert G.
Palgrave
,
Mojtaba
Abdi-jalebi
,
Zahra
Andaji-garmaroudi
,
Daniel W.
Davies
,
Mikko
Laitinen
,
Jaakko
Julin
,
Mark A.
Isaacs
,
Richard H.
Friend
,
David O.
Scanlon
,
Aron
Walsh
,
Robert L. Z.
Hoye
Open Access
Abstract: Halide double perovskites have gained significant attention, owing to their composition of low-toxicity elements, stability in air and long charge-carrier lifetimes. However, most double perovskites, including Cs2AgBiBr6, have wide bandgaps, which limits photoconversion efficiencies. The bandgap can be reduced through alloying with Sb3+, but Sb-rich alloys are difficult to synthesize due to the high formation energy of Cs2AgSbBr6, which itself has a wide bandgap. We develop a solution-based route to synthesize phase-pure Cs2Ag(SbxBi1−x)Br6 thin films, with the mixing parameter x continuously varying over the entire composition range. We reveal that the mixed alloys (x between 0.5 and 0.9) demonstrate smaller bandgaps than the pure Sb- and Bi-based compounds. The reduction in the bandgap of Cs2AgBiBr6 achieved through alloying (170 meV) is larger than if the mixed alloys had obeyed Vegard's law (70 meV). Through in-depth computations, we propose that bandgap lowering arises from the type II band alignment between Cs2AgBiBr6 and Cs2AgSbBr6. The energy mismatch between the Bi and Sb s and p atomic orbitals, coupled with their non-linear mixing, results in the alloys adopting a smaller bandgap than the pure compounds. Our work demonstrates an approach to achieve bandgap reduction and highlights that bandgap bowing may be found in other double perovskite alloys by pairing together materials forming a type II band alignment.
|
Oct 2020
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[14239]
Open Access
Abstract: Materials that display strong capabilities for lithium insertion without significant change in unit cell size on cycling are of considerable importance for electrochemical applications. Here, we present V2O3(SO4)2 as a host for lithium-ion batteries. Electrochemically, 2.0 Li+ ions can be inserted, giving Li2V2O3(SO4)2 with an oxidation state of V4+, as determined by X-ray absorption spectroscopy. The capacity of V2O3(SO4)2 can be increased from 157 mA h g−1 to 313 mA h g−1 with the insertion of two additional Li+ ions which would drastically improve the energy density of this material, but this would be over a wider potential range. Chemical lithiation using n-butyllithium was performed and characterisation using a range of techniques showed that a composition of Li4V2O3(SO4)2 can be obtained with an oxidation state of V3+. Structural studies of the lithiated materials by X-ray diffraction showed that up to 4.0 Li+ ions can be inserted into V2O3(SO4)2 whilst maintaining its framework structure.
|
Sep 2020
|
|