I15-Extreme Conditions
|
Diamond Proposal Number(s):
[24144]
Open Access
Abstract: BiFeO3-BaTiO3 (BF-BT) solid solutions exhibit great promise as the basis for high temperature piezoelectric transducers and energy storage dielectrics, but the fundamental mechanisms governing their functional properties require further clarification. In the present study, both pure and niobium-doped 0.7BF-0.3BT ceramics are synthesized by solid state reaction and their structure-property relationships are systematically investigated. It is shown that substituting a low concentration of Ti with Nb at a level of 0.5 at% increases the resistivity of BF-BT ceramics and facilitates ferroelectric switching at high electric field levels. Stable planar piezoelectric coupling factor values are achieved with a variation from 0.35 to 0.45 over the temperature range from 100 to 430 °C. In addition to the ferroelectric-paraelectric phase transformation at the Curie point (~ 430 °C), a frequency-dependent relaxation of the dielectric permittivity and associated loss peak are observed over the temperature range from -50 to +150 °C. These effects are correlated with anomalous enhancement of the remanent polarization and structural (rhombohedral) distortion with increasing temperature, indicating the occurrence of a re-entrant relaxor ferroelectric transformation on cooling. The results of the study provide new insight into the thermal evolution of structure and the corresponding functional properties in BF-BT and related solid solutions.
|
Jan 2023
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[18995]
Open Access
Abstract: The formation of stacking faults and phase interstratification disorder in layered nickel(II) hydroxides during the chemical precipitation synthesis of materials using nickel(II) nitrate and potassium hydroxide solutions has been investigated in the temperature range of 5 °C to 95 °C and time intervals from 1 hour to 1 week. Stacking faulted materials were identified by broadening of the 00l reflections, while interstratified materials were identified through the splitting of the 001 into two lines. In contrast to the disorder concepts presented in previous studies of these materials, this work has shown through vibrational spectroscopy that both the alpha-phase and beta-phase hydroxides are present in materials described with stacking fault disorder, while layered hydroxysalts were additionally present in the materials considered to be interstratified. Standard mixtures of Ni3(OH)4(NO3)2 and β-Ni(OH)2 were prepared to investigate if the intensity of particular vibrational bands could be correlated with the proportion of the particular phases in mixtures. The intensities of the C2v nitrate infrared and Raman bands at 990 cm−1 and 1315 cm−1 were shown to correlate with the amount of layered hydroxynitrate incorporated in the phase, theoretically providing a method to determine the components in mixed compositions. Since disorder and phase impurities in layered nickel hydroxide materials affect both their electroactive stability and performance as cathode materials, this work has important implications in several research fields.
|
Dec 2022
|
|
B16-Test Beamline
|
Diamond Proposal Number(s):
[31228]
Open Access
Abstract: Halide perovskites recently emerged as promising materials for the detection of ionising radiation. Single crystals of halide perovskites exhibit very fast and bright scintillation when cooled and may outperform the best modern scintillators at temperatures below 100 K. In this work we report on low-temperature scintillation properties of CsPbCl3 single crystals, grown using the Bridgeman method. The temperature dependences of the luminescence and decay kinetics were studied using X-ray excitation. At low temperatures, the crystal exhibits an intense narrow-band emission at about 420 nm with very fast decay kinetics. This emission, of which a characteristic feature is the strong thermal quenching, is attributed to the radiative decays of bound and trapped excitons. The fast, middle, and slow decay time constants obtained from a fit of a sum of exponential functions to the decay curve at 10 K are 0.1, 1 and 11 ns, respectively. The scintillation light yield of CsPbCl3 at 7 K measured at excitation with α-particles from an 241Am source is estimated to be 140 ± 15% of a reference LYSO-Ce crystal and 19000 ± 2000 ph per MeV under 14 keV X-ray excitation at 10 K. It is concluded that owing to a reduced amplitude of the slow decay component, CsPbCl3 exhibits an ultra-fast scintillation response that is superior to that of other halide perovskites. The combination of sub-nanosecond response time and the encouraging light yield has the potential of establishing this material as first choice for scintillation applications that rely on prompt detector response at cryogenic temperatures.
|
Dec 2022
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Sahil
Tippireddy
,
Feridoon
Azough
,
Vikram
Vikram
,
Animesh
Bhui
,
Philip
Chater
,
Demie
Kepaptsoglou
,
Quentin
Ramasse
,
Robert
Freer
,
Ricardo
Grau-Crespo
,
Kanishka
Biswas
,
Paz
Vaqueiro
,
Anthony V.
Powell
Diamond Proposal Number(s):
[30162]
Open Access
Abstract: Chalcopyrite, CuFeS2 is considered one of the promising n-type thermoelectric materials with high natural abundance as a mineral. In this work, partial substitution of germanium in materials CuFe1−xGexS2, (0.0 ≤ x ≤ 0.10), leads to an almost six-fold enhancement of thermoelectric properties. X-Ray photoelectron spectroscopy (XPS) reveals that germanium is present in two oxidation states: Ge2+ and Ge4+. The stereochemically-active 4s2 lone-pair of electrons associated with Ge2+ induces a local structural distortion. Pair-distribution function (PDF) analysis reveal that Ge2+ ions are displaced from the centre of the GeS4 tetrahedron towards a triangular face, leading to pseudo-trigonal pyramidal coordination. This distortion is accompanied by lattice softening and an increase of the strain-fluctuation scattering parameter (ΓS), leading to a decrease in thermal conductivity. Phonon calculations demonstrate that germanium substitution leads to the appearance of resonant phonon modes. These modes lie close in energy to the acoustic and low-energy optical modes of the host matrix, with which they can interact, providing an additional mechanism for reducing the thermal conductivity. The weak chemical bonding of germanium with sulphur also leads to localized electronic states near the Fermi level which results in a high density-of-states effective mass, enabling a relatively high Seebeck coefficient to be maintained, despite the reduced electrical resistivity. This combination produces an almost three-fold improvement in the power factor, which when coupled with the substantial reduction in thermal conductivity, leads to a maximum figure-of-merit, zT ∼ 0.4 at 723 K for CuFe0.94Ge0.06S2.
|
Oct 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[27440]
Open Access
Abstract: Porous boron nitride (BN) displays promising properties for interfacial and bulk processes, e.g. molecular separation and storage, or (photo)catalysis. To maximise porous BN's potential in such applications, tuning and controlling its chemical and structural features is key. Functionalisation of porous BN with metal nanoparticle represents one possible route, albeit a hardly explored one. Metal–organic frameworks (MOFs) have been widely used as precursors to synthesise metal functionalised porous carbon-based materials, yet MOF-derived metal functionalised inorganic porous materials remain unexplored. Here, we hypothesise that MOFs could also serve as a platform to produce metal-functionalised porous BN. We have used a Cu-containing MOF, i.e. Cu/ZIF-8, as a precursor and successfully obtained porous BN functionalised with Cu nanoparticles (i.e. Cu/BN). While we have shown control of the Cu content, we have not yet demonstrated it for the nanoparticle size. The functionalisation has led to improved light harvesting and enhanced electron–hole separation, which have had a direct positive impact on the CO2 photoreduction activity (production formation rate 1.5 times higher than pristine BN and 12.5 times higher than g-C3N4). In addition, we have found that the metal in the MOF precursor impacts porous BN's purity. Unlike Cu/ZIF-8, a Co-containing ZIF-8 precursor led to porous C-BN (i.e. BN with a large amount of C in the structure). Overall, given the diversity of metals in MOFs, one could envision our approach as a method to produce a library of different metal functionalised porous BN samples.
|
Sep 2022
|
|
B18-Core EXAFS
|
Ricardo
Navar
,
Giulia
Tarantino
,
Owain T.
Beynon
,
Daniele
Padovan
,
Luca
Botti
,
Emma K.
Gibson
,
Peter P.
Wells
,
Alun
Owens
,
Simon
Kondrat
,
Andrew J.
Logsdail
,
Ceri
Hammond
Diamond Proposal Number(s):
[12597]
Open Access
Abstract: Sn-Beta has emerged as a state-of-the-art catalyst for a range of sustainable chemical transformations. Conventionally prepared by bottom-up hydrothermal synthesis methods, recent research has demonstrated the efficiency of several top-down methods of preparation. One attractive top-down approach is Solid-State Incorporation, where a dealuminated Beta zeolite is physically mixed with a solid Sn precursor, in particular Sn (II) acetate, prior to heat treatment at 550 °C. This procedure is fast and benign, and metal incorporation requires no solvents and hence produces no aqueous Sn-containing waste streams. Although the performances of these catalysts have been well explored in recent years, the mechanism of heteroatom incorporation remains unknown, and hence, opportunities to improve the synthetic procedure via a molecular approach remain. Herein, we utilise a range of in situ spectroscopic techniques, alongside kinetic and computational methods, to elucidate the mechanisms that occur during preparation of the catalyst, and then improve the efficacy of the synthetic protocol. Specifically, we find that successful incorporation of Sn into the lattice occurs in several distinct steps, including i) preliminary coordination of the metal ion to the vacant lattice sites of the zeolite during physical grinding; ii) partial incorporation of the metal ion into the zeolite framework upon selective decomposition of the acetate ligands, which occurs upon heating the physical mixture in an inert gas flow from room temperature to 550 °C; and iii) full isomorphous substitution of Sn into the lattice alongside its simultaneous oxidation to Lewis acidic Sn(IV), when the physically mixed material is exposed to air during a short (<1 h) isotherm period. Long isotherm steps are shown to be unnecessary, and fully oxidised Sn(IV) precursors are shown to be unsuitable for successful incorporation into the lattice. We also find that the formation of extra-framework Sn oxides is primarily dependent on the quantity of Sn present in the initial physical mixture. Based on these findings, we demonstrate a faster synthetic protocol for the preparation of Sn-Beta materials via Solid-State Incorporation, and benchmark their performance of the catalyst for the Meerwein-Ponndorf-Verley transfer hydrogenation reaction and for the isomerisation of glucose to fructose.
|
Sep 2022
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[14239]
Open Access
Abstract: Li- and Mn-rich layered oxides (Li1.2Ni0.2Mn0.6O2) are actively pursued as high energy and sustainable alternatives to the current Li-ion battery cathodes that contain Co. However, the severe decay in discharge voltage observed in these cathodes needs to be addressed before they can find commercial applications. A few mechanisms differing in origin have been proposed to explain the voltage fade, which may be caused by differences in material composition, morphology and electrochemical testing protocols. Here, these challenges are addressed by synthesising Li1.2Ni0.2Mn0.6O2 using three different hydrothermal and solid-state approaches and studying their degradation using the same cell design and cycling protocols. The voltage fade is found to be similar under the same electrochemical testing protocols, regardless of the synthesis method. X-ray absorption near edge, extended X-ray absorption fine structure spectroscopies, and energy loss spectroscopy in a scanning transmission electron microscope indicate only minor changes in the bulk Mn oxidation state but reveal a much more reduced particle surface upon extended cycling. No spinel phase is seen via the bulk structural characterisation methods of synchrotron X-ray diffraction, 7Li magic angle spinning solid state nuclear magnetic resonance and Raman spectroscopy. Thus, the voltage fade is believed to largely result from a heavily reduced particle surface. This hypothesis is further confirmed by galvanostatic intermittent titration technique analysis, which indicates that only very small shifts in equilibrium potential take place, in contrast to the overpotential which builds up after cycling. This suggests that a major source of the voltage decay is kinetic in origin, resulting from a heavily reduced particle surface with slow Li transport.
|
Sep 2022
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Open Access
Abstract: Disordered rock salt (DRS) cathodes have attracted considerable attention because of their high first charge capacities and relatively low cost. Here we investigate operando the structure and charge evolution of the Li1.1Mn0.7Ti0.2O2 Li-excess rock salt cathode with a first charge capacity of 270 mA h g−1. We associate a certain extent of the capacity fade in DRS to the in situ formation of locally ordered layered nanodomains during the electrochemical cycling of the long-range cation disordered rock salt. We quantify the short-range ordering of cations during cycling and evaluate its effect on the lithium-ion diffusion and charge compensation using operando studies based on X-ray total scattering and advanced spectroscopic methods at the Mn K-edge, namely high energy resolution fluorescence detected XANES and emission spectroscopies including main and valence-to-core transitions.
|
Aug 2022
|
|
I11-High Resolution Powder Diffraction
|
Abstract: Metal closo-borates are attractive electrolytes for solid state batteries. Here we present a detailed investigation of the polymorphism and thermal and electrochemical properties of Li2B10H10 and Li2B12H12 and their composites, (1 − x)Li2B12H12–xLi2B10H10. A new polymorph, β-Li2B10H10, is identified with a cubic structure, a = 9.567(1) Å (Fm[3 with combining macron]m), with dynamically disordered B10H102− anions. A sub-stoichiometric compound denoted as γ-Li2B10H10−y is prepared by thermal treatment (380 °C, 1 hour) in hydrogen and can be indexed to a cubic face-centered unit cell with a = 9.9224(5) Å. The 7Li MAS NMR spectra along with spin–lattice relaxation (T1) measured by 7Li saturation-recovery NMR experiments clearly reveal a high degree of dynamics assigned to increasing amounts of γ-Li2B10H10−y, which is in accordance with the measured Li+ ionic conductivity. Thermal treatment (380 °C, 1 hour) of Li2B12H12 in argon reveals the highest degree of dynamics and Li+ conductivity. The (1 − x)Li2B12H12–xLi2B10H10 composites are found to be physical mixtures of γ-Li2B10H10−y and Li2B12H12 with minor amounts of α-Li2B10H10, and their Li+ conductivities are proportional to the amount of γ-Li2B10H10−y. The highest Li+ conductivity is observed for γ-Li2B10H10−y: σ(Li+) = 7.6 × 10−6 S cm−1 at 30 °C and 7.2 × 10−3 S cm−1 at T = 330 °C. Cyclic voltammetry of γ-Li2B10H10−y reveals an oxidative stability up to 2.8 V vs. Li/Li+, and a stable plating and stripping of lithium.
|
Jul 2022
|
|
I19-Small Molecule Single Crystal Diffraction
|
Hannes
Michaels
,
Matthias Johannes
Golomb
,
Byeong
Kim
,
Tomas
Edvinsson
,
Fabio
Cucinotta
,
Paul G.
Waddell
,
Michael R.
Probert
,
Steven J.
Konezny
,
Gerrit
Boschloo
,
Aron
Walsh
,
Marina
Freitag
Diamond Proposal Number(s):
[22240]
Open Access
Abstract: Emerging technologies in solar energy will be critical in enabling worldwide society in overcoming the present energy challenges and reaching carbon net zero. Inefficient and unstable charge transport materials limit current emerging energy conversion and storage technologies. Low-dimensional coordination polymers represent an alternative, unprecedented class of charge transport materials, comprised of molecular building blocks. Here, we provide a comprehensive study of mixed-valence coordination polymers from an analysis of the charge transport mechanism to their implementation as hole conducting layers. CuII dithiocarbamate complexes afford morphology control of 1D polymer chains linked by (CuI2X2) copper halide rhombi. Concerted theoretical and experimental efforts identified the charge transport mechanism at the transition to band-like transport with an modeled effective hole mass of 6 me. The iodide-bridged coordination polymer showed an excellent conductivity of 1 mS cm-1 and a hole mobility of 5.8 10-4 cm2(Vs)-1 at room temperature. Nanosecond selective hole injection into coordination polymer thin films was captured by nanosecond photoluminescenceof halide perovskite films. The coordination polymers constitute a sustainable, tunable alternative to the current standard of heavily doped organic hole conductors.
|
Mar 2022
|
|