B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Jack E. N.
Swallow
,
Elizabeth S.
Jones
,
Ashley R.
Head
,
Joshua S.
Gibson
,
Roey
Ben David
,
Michael W.
Fraser
,
Matthijs A.
Van Spronsen
,
Shaojun
Xu
,
Georg
Held
,
Baran
Eren
,
Robert S
Weatherup
Diamond Proposal Number(s):
[25834]
Open Access
Abstract: The reactions of H2, CO2, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS) spectroscopy bridging pressures from 0.1 mbar to 1 bar. We find that the order of gas dosing can critically affect the catalyst chemical state, with the Cu catalyst maintained in a metallic state when H2 is introduced prior to the addition of CO2. Only on increasing the CO2 partial pressure is CuO formation observed that coexists with metallic Cu. When only CO2 is present, the surface oxidizes to Cu2O and CuO, and the subsequent addition of H2 partially reduces the surface to Cu2O without recovering metallic Cu, consistent with a high kinetic barrier to H2 dissociation on Cu2O. The addition of CO to the gas mixture is found to play a key role in removing adsorbed oxygen that otherwise passivates the Cu surface, making metallic Cu surface sites available for CO2 activation and subsequent conversion to CH3OH. These findings are corroborated by mass spectrometry measurements, which show increased H2O formation when H2 is dosed before rather than after CO2. The importance of maintaining metallic Cu sites during the methanol synthesis reaction is thereby highlighted, with the inclusion of CO in the gas feed helping to achieve this even in the absence of ZnO as the catalyst support.
|
Mar 2023
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[28511]
Open Access
Abstract: The contents of biological cells are retained within compartments formed of phospholipid membranes. The movement of material within and between cells is often mediated by the fusion of phospholipid membranes, which allows mixing of contents or excretion of material into the surrounding environment. Biological membrane fusion is a highly regulated process that is catalyzed by proteins and often triggered by cellular signaling. In contrast, the controlled fusion of polymer-based membranes is largely unexplored, despite the potential application of this process in nanomedicine, smart materials, and reagent trafficking. Here, we demonstrate triggered polymersome fusion. Out-of-equilibrium polymersomes were formed by ring-opening metathesis polymerization-induced self-assembly and persist until a specific chemical signal (pH change) triggers their fusion. Characterization of polymersomes was performed by a variety of techniques, including dynamic light scattering, dry-state/cryogenic-transmission electron microscopy, and small-angle X-ray scattering (SAXS). The fusion process was followed by time-resolved SAXS analysis. Developing elementary methods of communication between polymersomes, such as fusion, will prove essential for emulating life-like behaviors in synthetic nanotechnology.
|
Mar 2023
|
|
B18-Core EXAFS
|
Panpan
Zhang
,
Mingchao
Wang
,
Yannan
Liu
,
Yubin
Fu
,
Mingming
Gao
,
Gang
Wang
,
Faxing
Wang
,
Zhiyong
Wang
,
Guangbo
Chen
,
Sheng
Yang
,
Youwen
Liu
,
Renhao
Dong
,
Minghao
Yu
,
Xing
Lu
,
Xinliang
Feng
Abstract: Although two-dimensional conjugated metal–organic frameworks (2D c-MOFs) provide an ideal platform for precise tailoring of capacitive electrode materials, high-capacitance 2D c-MOFs for non-aqueous supercapacitors remain to be further explored. Herein, we report a novel phthalocyanine-based nickel-bis(dithiolene) (NiS4)-linked 2D c-MOF (denoted as Ni2[CuPcS8]) with outstanding pseudocapacitive properties in 1 M TEABF4/acetonitrile. Each NiS4 linkage is disclosed to reversibly accommodate two electrons, conferring the Ni2[CuPcS8] electrode a two-step Faradic reaction with a record-high specific capacitance among the reported 2D c-MOFs in non-aqueous electrolytes (312 F g–1) and remarkable cycling stability (93.5% after 10,000 cycles). Multiple analyses unveil that the unique electron-storage capability of Ni2[CuPcS8] originates from its localized lowest unoccupied molecular orbital (LUMO) over the nickel-bis(dithiolene) linkage, which allows the efficient delocalization of the injected electrons throughout the conjugated linkage units without inducing apparent bonding stress. The Ni2[CuPcS8] anode is used to demonstrate an asymmetric supercapacitor device that delivers a high operating voltage of 2.3 V, a maximum energy density of 57.4 Wh kg–1, and ultralong stability over 5000 cycles.
|
Mar 2023
|
|
B18-Core EXAFS
|
Jonathan
Ruiz Esquius
,
David J.
Morgan
,
Gerardo
Algara Siller
,
Diego
Gianolio
,
Matteo
Aramini
,
Leopold
Lahn
,
Olga
Kasian
,
Simon A.
Kondrat
,
Robert
Schlögl
,
Graham J.
Hutchings
,
Rosa
Arrigo
,
Simon J.
Freakley
Diamond Proposal Number(s):
[15151]
Open Access
Abstract: The oxygen evolution reaction (OER) is crucial to future energy systems based on water electrolysis. Iridium oxides are promising catalysts due to their resistance to corrosion under acidic and oxidizing conditions. Highly active iridium (oxy)hydroxides prepared using alkali metal bases transform into low activity rutile IrO2 at elevated temperatures (>350 °C) during catalyst/electrode preparation. Depending on the residual amount of alkali metals, we now show that this transformation can result in either rutile IrO2 or nano-crystalline Li-intercalated IrOx. While the transition to rutile results in poor activity, the Li-intercalated IrOx has comparative activity and improved stability when compared to the highly active amorphous material despite being treated at 500 °C. This highly active nanocrystalline form of lithium iridate could be more resistant to industrial procedures to produce PEM membranes and provide a route to stabilize the high populations of redox active sites of amorphous iridium (oxy)hydroxides.
|
Mar 2023
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[7569]
Open Access
Abstract: A strategy for light-powered guest release from a tetrahedral capsule has been developed by incorporating azobenzene units at its vertices. A new Zn4L4 tetrahedral capsule bearing 12 diazo moieties at its metal-ion vertices was prepared from a phenyldiazenyl-functionalized subcomponent and a central trialdehyde panel. Ultraviolet irradiation caused isomerization of the peripheral diazo groups from the thermodynamically preferred trans configuration to the cis form, thereby generating steric clash and resulting in cage disassembly and concomitant guest release. Visible-light irradiation drove cage re-assembly following re-isomerization of the diazo groups to the trans form, resulting in guest re-uptake. A detailed 19F NMR study elucidated how switching led to guest release: each metal vertex tolerated only one cis-azobenzene moiety, with further isomerization leading to cage disassembly.
|
Feb 2023
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[25787, 27541, 29157]
Open Access
Abstract: Single-atom catalysts (SACs) on hematite photoanodes are efficient cocatalysts to boost photoelectrochemical performance. They feature high atom utilization, remarkable activity, and distinct active sites. However, the specific role of SACs on hematite photoanodes is not fully understood yet: Do SACs behave as a catalytic site or as a spectator? By combining spectroscopic experiments and computer simulations, we demonstrate that single-atom iridium (sIr) catalysts on hematite (α-Fe2O3/sIr) photoanodes act as a true catalyst by trapping holes from hematite and providing active sites for the water oxidation reaction. In situ transient absorption spectroscopy showed a reduced number of holes and shortened hole lifetime in the presence of sIr. This was particularly evident on the second timescale, indicative of fast hole transfer and depletion toward water oxidation. Intensity-modulated photocurrent spectroscopy evidenced a faster hole transfer at the α-Fe2O3/sIr/electrolyte interface compared to that at bare α-Fe2O3. Density functional theory calculations revealed the mechanism for water oxidation using sIr as a catalytic center to be the preferred pathway as it displayed a lower onset potential than the Fe sites. X-ray photoelectron spectroscopy demonstrated that sIr introduced a mid-gap of 4d state, key to the fast hole transfer and hole depletion. These combined results provide new insights into the processes controlling solar water oxidation and the role of SACs in enhancing the catalytic performance of semiconductors in photo-assisted reactions.
|
Jan 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[30958]
Open Access
Abstract: The heterogeneous solid–gas reactions of crystals of [Rh(L2)(propene)][BArF4] (1, L2 = tBu2PCH2CH2PtBu2) with H2 and propene, 1-butene, propyne, or 1-butyne are explored by gas-phase nuclear magnetic resonance (NMR) spectroscopy under batch conditions at 25 °C. The temporal evolution of the resulting parahydrogen-induced polarization (PHIP) effects measures catalytic flux and thus interrogates the efficiency of catalytic pairwise para-H2 transfer, speciation changes in the crystalline catalyst at the molecular level, and allows for high-quality single-scan 1H, 13C NMR gas-phase spectra for the products to be obtained, as well as 2D-measurements. Complex 1 reacts with H2 to form dimeric [Rh(L2)(H)(μ-H)]2[BArF4]2 (4), as probed using EXAFS; meanwhile, a single-crystal of 1 equilibrates NMR silent para-H2 with its NMR active ortho isomer, contemporaneously converting into 4, and 1 and 4 each convert para-H2 into ortho-H2 at different rates. Hydrogenation of propene using 1 and para-H2 results in very high initial polarization levels in propane (>85%). Strong PHIP was also detected in the hydrogenation products of 1-butene, propyne, and 1-butyne. With propyne, a competing cyclotrimerization deactivation process occurs to afford [Rh(tBu2PCH2CH2PtBu2)(1,3,4-Me3C6H3)][BArF4], while with 1-butyne, rapid isomerization of 1-butyne occurs to give a butadiene complex, which then reacts with H2 more slowly to form catalytically active 4. Surprisingly, the high PHIP hydrogenation efficiencies allow hyperpolarization effects to be seen when H2 is taken directly from a regular cylinder at 25 °C. Finally, changing the chelating phosphine to Cy2PCH2CH2PCy2 results in initial high polarization efficiencies for propene hydrogenation, but rapid quenching of the catalyst competes to form the zwitterion [Rh(Cy2PCH2CH2PCy2){η6-(CF3)2(C6H3)}BArF3].
|
Jan 2023
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[24447]
Open Access
Abstract: Adenosine tripolyphosphate (ATP) is a small polyvalent anion that has recently been shown to interact with proteins and have a major impact on assembly processes involved in biomolecular condensate formation and protein aggregation. However, the nature of non-specific protein–ATP interactions and their effects on protein solubility are largely unknown. Here, the binding of ATP to the globular model protein is characterized in detail using X-ray crystallography and nuclear magnetic resonance (NMR). Using NMR, we identified six ATP binding sites on the lysozyme surface, with one known high-affinity nucleic acid binding site and five non-specific previously unknown sites with millimolar affinities that also bind tripolyphosphate (TPP). ATP binding occurs primarily through the polyphosphate moiety, which was confirmed by the X-ray structure of the lysozyme–ATP complex. Importantly, ATP binds preferentially to arginine over lysine in non-specific binding sites. ATP and TPP have similar effects on solution-phase protein–protein interactions. At low salt concentrations, ion binding to lysozyme causes precipitation, while at higher salt concentrations, redissolution occurs. The addition of an equimolar concentration of magnesium to ATP does not alter ATP binding affinities but prevents lysozyme precipitation. These findings have important implications for both protein crystallization and cell biology. Crystallization occurs readily in ATP solutions outside the well-established crystallization window. In the context of cell biology, the findings suggest that ATP binds non-specifically to folded proteins in physiological conditions. Based on the nature of the binding sites identified by NMR, we propose several mechanisms for how ATP binding can prevent the aggregation of natively folded proteins.
|
Jan 2023
|
|
I03-Macromolecular Crystallography
|
Vanessa
Harawa
,
Thomas W.
Thorpe
,
James R.
Marshall
,
Jack J.
Sangster
,
Amelia K.
Gilio
,
Lucian
Pirvu
,
Rachel S.
Heath
,
Antonio
Angelastro
,
James D.
Finnigan
,
Simon J.
Charnock
,
Jordan W.
Nafie
,
Gideon
Grogan
,
Roger C.
Whitehead
,
Nicholas J.
Turner
Diamond Proposal Number(s):
[24948]
Open Access
Abstract: The development of efficient and sustainable methods for the synthesis of nitrogen heterocycles is an important goal for the chemical industry. In particular, substituted chiral piperidines are prominent targets due to their prevalence in medicinally relevant compounds and their precursors. A potential biocatalytic approach to the synthesis of this privileged scaffold would be the asymmetric dearomatization of readily assembled activated pyridines. However, nature is yet to yield a suitable biocatalyst specifically for this reaction. Here, by combining chemical synthesis and biocatalysis, we present a general chemo-enzymatic approach for the asymmetric dearomatization of activated pyridines for the preparation of substituted piperidines with precise stereochemistry. The key step involves a stereoselective one-pot amine oxidase/ene imine reductase cascade to convert N-substituted tetrahydropyridines to stereo-defined 3- and 3,4-substituted piperidines. This chemo-enzymatic approach has proved useful for key transformations in the syntheses of antipsychotic drugs Preclamol and OSU-6162, as well as for the preparation of two important intermediates in synthetic routes of the ovarian cancer monotherapeutic Niraparib.
|
Nov 2022
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Alexandra
Morscher
,
Benjamin B.
Duff
,
Guopeng
Han
,
Luke M.
Daniels
,
Yun
Dang
,
Marco
Zanella
,
Manel
Sonni
,
Ahmad
Malik
,
Matthew S.
Dyer
,
Ruiyong
Chen
,
Frédéric
Blanc
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[23666, 21726]
Open Access
Abstract: Argyrodite is a key structure type for ion-transporting materials. Oxide argyrodites are largely unexplored despite sulfide argyrodites being a leading family of solid-state lithium-ion conductors, in which the control of lithium distribution over a wide range of available sites strongly influences the conductivity. We present a new cubic Li-rich (>6 Li+ per formula unit) oxide argyrodite Li7SiO5Cl that crystallizes with an ordered cubic (P213) structure at room temperature, undergoing a transition at 473 K to a Li+ site disordered F4̅3m structure, consistent with the symmetry adopted by superionic sulfide argyrodites. Four different Li+ sites are occupied in Li7SiO5Cl (T5, T5a, T3, and T4), the combination of which is previously unreported for Li-containing argyrodites. The disordered F4̅3m structure is stabilized to room temperature via substitution of Si4+ with P5+ in Li6+xP1–xSixO5Cl (0.3 < x < 0.85) solid solution. The resulting delocalization of Li+ sites leads to a maximum ionic conductivity of 1.82(1) × 10–6 S cm–1 at x = 0.75, which is 3 orders of magnitude higher than the conductivities reported previously for oxide argyrodites. The variation of ionic conductivity with composition in Li6+xP1–xSixO5Cl is directly connected to structural changes occurring within the Li+ sublattice. These materials present superior atmospheric stability over analogous sulfide argyrodites and are stable against Li metal. The ability to control the ionic conductivity through structure and composition emphasizes the advances that can be made with further research in the open field of oxide argyrodites.
|
Nov 2022
|
|