Krios I-Titan Krios I at Diamond
|
Open Access
Abstract: Cryo-electron tomography (cryo-ET) has been gaining momentum in recent years, especially since the introduction of direct electron detectors, improved automated acquisition strategies, preparative techniques that expand the possibilities of what the electron microscope can image at high-resolution using cryo-ET and new subtomogram averaging software. Additionally, data acquisition has become increasingly streamlined, making it more accessible to many users. The SARS-CoV-2 pandemic has further accelerated remote cryo-electron microscopy (cryo-EM) data collection, especially for single-particle cryo-EM, in many facilities globally, providing uninterrupted user access to state-of-the-art instruments during the pandemic. With the recent advances in Tomo5 (software for 3D electron tomography), remote cryo-ET data collection has become robust and easy to handle from anywhere in the world. This article aims to provide a detailed walk-through, starting from the data collection setup in the tomography software for the process of a (remote) cryo-ET data collection session with detailed troubleshooting. The (remote) data collection protocol is further complemented with the workflow for structure determination at near-atomic resolution by subtomogram averaging with emClarity, using apoferritin as an example.
|
Jul 2022
|
|
Scios-Scios at Diamond
|
Diamond Proposal Number(s):
[21004]
Open Access
Abstract: Presented here is a protocol for preparing cryo-lamellae from plunge-frozen grids of Plasmodium falciparum-infected human erythrocytes, which could easily be adapted for other biological samples. The basic principles for preparing samples, milling, and viewing lamellae are common to all instruments and the protocol can be followed as a general guide to on-grid cryo-lamella preparation for cryo-electron microscopy (cryoEM) and cryo-electron tomography (cryoET). Electron microscopy grids supporting the cells are plunge-frozen into liquid nitrogen-cooled liquid ethane using a manual or automated plunge freezer, then screened on a light microscope equipped with a cryo-stage. Frozen grids are transferred into a cryo-scanning electron microscope equipped with a focused ion beam (cryoFIB-SEM). Grids are routinely sputter coated prior to milling, which aids dispersal of charge build-up during milling. Alternatively, an e-beam rotary coater can be used to apply a layer of carbon-platinum to the grids, the exact thickness of which can be more precisely controlled. Once inside the cryoFIB-SEM an additional coating of an organoplatinum compound is applied to the surface of the grid via a gas injection system (GIS). This layer protects the front edge of the lamella as it is milled, the integrity of which is critical for achieving uniformly thin lamellae. Regions of interest are identified via SEM and milling is carried out in a step-wise fashion, reducing the current of the ion beam as the lamella reaches electron transparency, in order to avoid excessive heat generation. A grid with multiple lamellae is then transferred to a transmission electron microscope (TEM) under cryogenic conditions for tilt-series acquisition. A robust and contamination-free workflow for lamella preparation is an essential step for downstream techniques, including cellular cryoEM, cryoET, and sub-tomogram averaging. Development of these techniques, especially for lift-out and milling of high-pressure frozen samples, is of high-priority in the field.
|
Aug 2021
|
|
VMXm-Versatile Macromolecular Crystallography microfocus
|
Open Access
Abstract: The mounting of microcrystals (<10 µm) for single crystal cryo-crystallography presents a non-trivial challenge. Improvements in data quality have been seen for microcrystals with the development of beamline optics, beam stability and variable beam size focusing from submicron to microns, such as at the VMXm beamline at Diamond Light Source. Further improvements in data quality will be gained through improvements in sample environment and sample preparation. Microcrystals inherently generate weaker diffraction, therefore improving the signal-to-noise is key to collecting quality X-ray diffraction data and will predominantly come from reductions in background noise. Major sources of X-ray background noise in a diffraction experiment are from their interaction with the air path before and after the sample, excess crystallization solution surrounding the sample, the presence of crystalline ice and scatter from any other beamline instrumentation or X-ray windows. The VMXm beamline comprises instrumentation and a sample preparation protocol to reduce all these sources of noise.
Firstly, an in-vacuum sample environment at VMXm removes the air path between X-ray source and sample. Next, sample preparation protocols for macromolecular crystallography at VMXm utilize a number of processes and tools adapted from cryoTEM. These include copper grids with holey carbon support films, automated blotting and plunge cooling robotics making use of liquid ethane. These tools enable the preparation of hundreds of microcrystals on a single cryoTEM grid with minimal surrounding liquid on a low-noise support. They also minimize the formation of crystalline ice from any remaining liquid surrounding the crystals.
We present the process for preparing and assessing the quality of soluble protein microcrystals using visible light and scanning electron microscopy before mounting the samples on the VMXm beamline for X-ray diffraction experiments. We will also provide examples of good quality samples as well as those which require further optimization and strategies to do so.
|
Jun 2021
|
|
B24-Cryo Soft X-ray Tomography
|
Nina
Vyas
,
Nina
Perry
,
Chidinma A.
Okolo
,
Ilias
Kounatidis
,
Thomas M.
Fish
,
Kamal L.
Nahas
,
Archana
Jadhav
,
Mohamed A.
Koronfel
,
Johannes
Groen
,
Eva
Pereiro
,
Ian M.
Dobbie
,
Maria
Harkiolaki
Diamond Proposal Number(s):
[25512]
Open Access
Abstract: Three-dimensional (3D) structured illumination microscopy (SIM) allows imaging of fluorescently labelled cellular structures at higher resolution than conventional fluorescence microscopy. This super-resolution (SR) technique enables visualization of molecular processes in whole cells and has the potential to be used in conjunction with electron microscopy and X-ray tomography to correlate structural and functional information. A SIM microscope for cryogenically preserved samples (cryoSIM) has recently been commissioned at the correlative cryo-imaging beamline B24 at the UK synchrotron.
It was designed specifically for 3D imaging of biological samples at cryogenic temperatures in a manner compatible with subsequent imaging of the same samples by X-ray microscopy methods such as cryo-soft X-ray tomography. This video article provides detailed methods and protocols for successful imaging using the cryoSIM. In addition to instructions on the operation of the cryoSIM microscope, recommendations have been included regarding the choice of samples, fluorophores, and parameter settings. The protocol is demonstrated in U2OS cell samples whose mitochondria and tubulin have been fluorescently labelled.
|
May 2021
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
Krios IV-Titan Krios IV at Diamond
Talos-Talos Arctica at Diamond
|
Diamond Proposal Number(s):
[23047]
Open Access
Abstract: Cryo-electron microscopy (cryoEM) is a powerful technique for structure determination of macromolecular complexes, via single particle analysis (SPA). The overall process involves i) vitrifying the specimen in a thin film supported on a cryoEM grid; ii) screening the specimen to assess particle distribution and ice quality; iii) if the grid is suitable, collecting a single particle dataset for analysis; and iv) image processing to yield an EM density map. In this protocol, an overview for each of these steps is provided, with a focus on the variables which a user can modify during the workflow and the troubleshooting of common issues. With remote microscope operation becoming standard in many facilities, variations on imaging protocols to assist users in efficient operation and imaging when physical access to the microscope is limited will be described.
|
May 2021
|
|
NONE-No attached Diamond beamline
|
Alice
Douangamath
,
Alisa
Powell
,
Daren
Fearon
,
Patrick M.
Collins
,
Romain
Talon
,
Tobias
Krojer
,
Rachael
Skyner
,
Jose
Brandao-Neto
,
Louise
Dunnett
,
Alexandre
Dias
,
Anthony
Aimon
,
Nicholas M.
Pearce
,
Conor
Wild
,
Tyler J.
Gorrie-Stone
,
Frank
Von Delft
Open Access
Abstract: In fragment-based drug discovery, hundreds or often thousands of compounds smaller than ~300 Da are tested against the protein of interest to identify chemical entities that can be developed into potent drug candidates. Since the compounds are small, interactions are weak, and the screening method must therefore be highly sensitive; moreover, structural information tends to be crucial for elaborating these hits into lead-like compounds. Therefore, protein crystallography has always been a gold-standard technique, yet historically too challenging to find widespread use as a primary screen.
Initial XChem experiments were demonstrated in 2014 and then trialed with academic and industrial collaborators to validate the process. Since then, a large research effort and significant beamtime have streamlined sample preparation, developed a fragment library with rapid follow-up possibilities, automated and improved the capability of I04-1 beamline for unattended data collection, and implemented new tools for data management, analysis and hit identification.
XChem is now a facility for large-scale crystallographic fragment screening, supporting the entire crystals-to-deposition process, and accessible to academic and industrial users worldwide. The peer-reviewed academic user program has been actively developed since 2016, to accommodate projects from as broad a scientific scope as possible, including well-validated as well as exploratory projects. Academic access is allocated through biannual calls for peer-reviewed proposals, and proprietary work is arranged by Diamond's Industrial Liaison group. This workflow has already been routinely applied to over a hundred targets from diverse therapeutic areas, and effectively identifies weak binders (1%-30% hit rate), which both serve as high-quality starting points for compound design and provide extensive structural information on binding sites. The resilience of the process was demonstrated by continued screening of SARS-CoV-2 targets during the COVID-19 pandemic, including a 3-week turn-around for the main protease.
|
May 2021
|
|
I23-Long wavelength MX
|
Open Access
Abstract: Long-wavelength macromolecular crystallography (MX) exploits the anomalous scattering properties of elements, such as sulfur, phosphorus, potassium, chlorine, or calcium, that are often natively present in macromolecules. This enables the direct structure solution of proteins and nucleic acids via experimental phasing without the need of additional labelling. To eliminate the significant air absorption of X-rays in this wavelength regime, these experiments are performed in a vacuum environment. Beamline I23 at Diamond Light Source, UK, is the first synchrotron instrument of its kind, designed and optimized for MX experiments in the long wavelength range towards 5 Å.
To make this possible, a large vacuum vessel encloses all endstation components of the sample environment. The necessity to maintain samples at cryogenic temperatures during storage and data collection in vacuum requires the use of thermally conductive sample holders. This facilitates efficient heat removal to ensure sample cooling to approximately 50 K. The current protocol describes the procedures used for sample preparation and transfer of samples into vacuum on beamline I23. Ensuring uniformity in practices and methods already established within the macromolecular crystallography community, sample cooling to liquid nitrogen temperature can be performed in any laboratory setting equipped with standard MX tools.
Cryogenic storage and transport of samples only require standard commercially available equipment. Specialized equipment is required for the transfer of cryogenically cooled crystals from liquid nitrogen into the vacuum endstation. Bespoke sample handling tools and a dedicated Cryogenic Transfer System (CTS) have been developed in house. Diffraction data collected on samples prepared using this protocol show excellent merging statistics, indicating that the quality of samples is unaltered during the procedure. This opens unique opportunities for in-vacuum MX in a wavelength range beyond standard synchrotron beamlines.
|
Apr 2021
|
|
B24-Cryo Soft X-ray Tomography
|
Diamond Proposal Number(s):
[23046]
Abstract: Imaging techniques are fundamental in order to understand cell organization and machinery in biological research and the related fields. Among these techniques, cryo soft X-ray tomography (SXT) allows imaging whole cryo-preserved cells in the water window X-ray energy range (284-543 eV), in which carbon structures have intrinsically higher absorption than water, allowing the 3D reconstruction of the linear absorption coefficient of the material contained in each voxel. Quantitative structural information at the level of whole cells up to 10 µm thick is then achievable this way, with high throughput and spatial resolution down to 25-30 nm half-pitch. Cryo-SXT has proven itself relevant to current biomedical research, providing 3D information on cellular infection processes (virus, bacteria, or parasites), morphological changes due to diseases (such as recessive genetic diseases) and helping us understand drug action at the cellular level, or locating specific structures in the 3D cellular environment. In addition, by taking advantage of the tunable wavelength at synchrotron facilities, spectro-microscopy or its 3D counterpart, spectro-tomography, can also be used to image and quantify specific elements in the cell, such as calcium in biomineralization processes. Cryo-SXT provides complementary information to other biological imaging techniques such as electron microscopy, X-ray fluorescence or visible light fluorescence, and is generally used as a partner method for 2D or 3D correlative imaging at cryogenic conditions in order to link function, location, and morphology.
|
Mar 2021
|
|
I24-Microfocus Macromolecular Crystallography
Data acquisition
|
Open Access
Abstract: Serial data collection is a relatively new technique for synchrotron users. A user manual for fixed target data collection at I24, Diamond Light Source is presented with detailed step-by-step instructions, figures, and videos for smooth data collection.
|
Feb 2021
|
|
|
Open Access
Abstract: SEC-BioSAXS measurements of biological macromolecules are a standard approach for determining solution structure of macromolecules and their complexes. Here, we analyze SEC-BioSAXS data from two types of commonly encountered SEC traces—chromatograms with fully resolved and partially resolved peaks. We demonstrate the analysis and deconvolution using scatter and BioXTAS RAW.
|
Jan 2021
|
|