I12-JEEP: Joint Engineering, Environmental and Processing
|
C.
Paraskevoulakos
,
J. P.
Forna-kreutzer
,
K. R.
Hallam
,
C. P.
Jones
,
T. B.
Scott
,
C.
Gausse
,
D. J.
Bailey
,
C. A.
Simpson
,
D.
Liu
,
C.
Reinhard
,
C. L.
Corkhill
,
M.
Mostafavi
Diamond Proposal Number(s):
[20189]
Open Access
Abstract: Decommissioning of the damaged Chernobyl nuclear reactor Unit 4 is a top priority for the global community. Before such operations begin, it is crucial to understand the behaviour of the hazardous materials formed during the accident. Since those materials formed under extreme and mostly unquantified conditions, modelling alone is insufficient to accurately predict their physical, chemical and, predominantly, mechanical behaviour. Meanwhile, knowledge of the mechanical characteristics of those materials, such as their strength, is a priority before robotic systems are employed for retrieval and the force expected from them to be exerted is one of the key design questions. In this paper we target to measurement of the standard mechanical properties of the materials formed during the accident by testing small-scale, low radioactivity simulants. A combined methodology using Hertzian indentation, synchrotron X-ray tomography and digital volume correlation (DVC), was adopted to estimate the mechanical properties. Displacement fields around the Hertzian indentation, performed in-situ in a synchrotron, were measured by analysing tomograms with DVC. The load applied during the indentation, combined with full-field displacement measured by DVC was used to estimate the mechanical properties, such as Young's modulus and Poisson's ratio of these hazardous materials.
|
Mar 2021
|
|
I07-Surface & interface diffraction
|
Alberto
Privitera
,
Ross
Warren
,
Giacomo
Londi
,
Pascal
Kaienburg
,
Junjie
Liu
,
Andreas
Sperlich
,
Andreas E.
Lauritzen
,
Oliver
Thimm
,
Arzhang
Ardavan
,
David
Beljonne
,
Moritz
Riede
Diamond Proposal Number(s):
[20426]
Open Access
Abstract: We use the electron spin as a probe to gain insight into the mechanism of molecular doping in a p-doped zinc phthalocyanine host across a broad range of temperatures (80–280 K) and doping concentrations (0–5 wt% of F6-TCNNQ). Electron paramagnetic resonance (EPR) spectroscopy discloses the presence of two main paramagnetic species distinguished by two different g-tensors, which are assigned based on density functional theory calculations to the formation of a positive polaron on the host and a radical anion on the dopant. Close inspection of the EPR spectra shows that radical anions on the dopants couple in an antiferromagnetic manner at device-relevant doping concentrations, thereby suggesting the presence of dopant clustering, and that positive polarons on the molecular host move by polaron hopping with an activation energy of 5 meV. This activation energy is substantially smaller than that inferred from electrical conductivity measurements (∼233 meV), as the latter also includes a (major) contribution from charge-transfer state dissociation. It emerges from this study that probing the electron spin can provide rich information on the nature and dynamics of charge carriers generated upon doping molecular semiconductors, which could serve as a basis for the design of the next generation of dopant and host materials.
|
Feb 2021
|
|
I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[22264]
Abstract: The high-voltage (4.7 V vs Li+/Li) spinel lithium nickel manganese oxide (LiNi0.5Mn1.5O4, LNMO) is a promising candidate for the next generation of lithium-ion batteries due to its high energy density, low cost, and low environmental impact. However, poor cycling performance at high cutoff potentials limits its commercialization. Herein, hollow-structured LNMO is synergistically paired with an ionic liquid electrolyte, 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (Pyr1,3FSI), to achieve stable cycling performance and improve the rate capability. The optimized cathode–electrolyte system exhibits extended cycling performance (>85% capacity retention after 300 cycles) and high rate performance (106.2 mAh g–1 at 5C) even at an elevated temperature of 65 °C. X-ray photoelectron spectroscopy and spatially resolved X-ray fluorescence analyses confirm the formation of a robust, LiF-rich cathode–electrolyte interphase. This study presents a comprehensive design strategy to improve the electrochemical performance of high-voltage cathode materials.
|
Feb 2021
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[16420]
Abstract: Simple n-alcohols, such as 1-dodecanol, show anomalous film-forming and friction behaviors under elastohydrodynamic lubrication (EHL) conditions, as found inside bearings and gears. Using tribometer, diamond anvil cell (DAC), and differential scanning calorimetry (DSC) experiments, we show that liquid 1-dodecanol undergoes a pressure-induced solidification when entrained into EHL contacts. Different solid polymorphs are formed inside the contact depending on the temperature and pressure conditions. Surprisingly, at a moderate temperature and pressure, 1-dodecanol forms a polymorph that exhibits robust macroscale superlubricity. The DAC and DSC experiments show that superlubricity is facilitated by the formation of lamellar, hydrogen-bonded structures of hexagonally close-packed molecules, which promote interlayer sliding. This novel superlubricity mechanism is similar to that proposed for the two-dimensional materials commonly employed as solid lubricants, but it also enables the practical advantages of liquid lubricants to be maintained. When the pressure is increased, 1-dodecanol undergoes a polymorphic transformation into a phase that gives a higher friction. The DAC and DSC experiments indicate that the high-friction polymorph is an orthorhombic crystal. The polymorphic transformation pressure coincides with the onset of a dimple formation in the EHL films, revealing that the anomalous film shapes are caused by the formation of rigid orthorhombic crystals inside the contact. This is the first demonstration of a macroscale superlubricity in an EHL contact lubricated by a nonaqueous liquid that arises from bulk effects rather than tribochemical transformations at the surfaces. Since the superlubricity observed here results from phase transformations, it is continuously self-replenishing and is insensitive to surface chemistry and topology. This discovery creates the possibility of implementing superlubricity in a wide range of machine components, which would result in enormous improvements in efficiency and durability.
|
Feb 2021
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[20757]
Open Access
Abstract: Understanding the kinetics of the crystallization process for organometal halide perovskite formation is critical in determining the crystalline, nanoscale morphology and therefore the electronic properties of the films produced during thin film formation from solution. In this work, in situ grazing incidence small-angle X-ray scattering (GISAXS) and optical microscopy measurements are used to investigate the processes of nucleation and growth of pristine mixed halide perovskite (MAPbI3–xClx) crystalline films deposited by bar coating at 60 °C, with and without additives in the solution. A small amount of 1,8-diiodooctane (DIO) and hydriodic acid (HI) added to MAPbI3–xClx is shown to increase the numbers of nucleation centers promoting heterogeneous nucleation and accelerate and modify the size of nuclei during nucleation and growth. A generalized formation mechanism is derived from the overlapping parameters obtained from real-time GISAXS and optical microscopy, which revealed that during nucleation, perovskite precursors cluster before becoming the nuclei that function as elemental units for subsequent formation of perovskite crystals. Additive-free MAPbI3–xClx follows reaction-controlled growth, in contrast with when DIO and HI are present, and it is highly possible that the growth then follows a hindered diffusion-controlled mechanism. These results provide important details of the crystallization mechanisms occurring and will help to develop greater control over perovskite films produced.
|
Feb 2021
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[22322]
Abstract: The lithium-exchanged form of a merlinoite zeolite (MER) with Si/Al = 4.2 (unit cell composition Li6.2Al6.2Si25.8O64) possesses a strongly contracted framework when dehydrated (the unit cell volume decreases by 12.9% from the hydrated “wide-pore” form to the dehydrated “narrow-pore” form). It shows cooperative adsorption behavior for CO2, leading to two-step isotherms with the second step at elevated pressure (>2.5 bar at 298 K). Partially exchanging Na and K cations to give single-phase Li,Na- and Li,K-MER materials reduces the pressure of this second adsorption step because the transition from narrow- to wide-pore forms upon CO2 adsorption occurs at lower partial pressures compared to that in Li-MER: partial exchange with Cs does not reduce the pressure of this transition. Exsolution effects are also seen at K cation contents >2.2 per unit cell. The phase transitions proceed via intermediate structures by complex phase behavior rarely seen for zeolitic materials. The strongly distorted narrow-pore structures adopted upon dehydration give one-dimensional channel structures in which the percolation of CO2 through the material requires cation migration from their locations in ste sites. This is slow in Li3.4Cs2.8-MER where Cs cations occupy these critical ste cavities in the channels, causing very slow adsorption kinetics. As the partial pressure of CO2 increases, a threshold pressure is reached where cooperative adsorption and Cs cation migration occur and the wide-pore form results, with a three-dimensionally connected pore system, leading to a sharp increase in uptake. This is far in excess of the increase of unit cell volume because more of the pore space becomes accessible. Strong hysteretic effects occur upon desorption, leading to CO2 encapsulation. CO2 remaining within the material after repeated adsorption/desorption cycles without heated activation improves sorption kinetics and modifies the stepped isotherms.
|
Feb 2021
|
|
I11-High Resolution Powder Diffraction
|
Ashok S.
Menon
,
Seda
Ulusoy
,
Dickson O.
Ojwang
,
Lars
Riekehr
,
Christophe
Didier
,
Vanessa K.
Peterson
,
German
Salazar-alvarez
,
Peter
Svedlindh
,
Kristina
Edström
,
Cesar Pay
Gomez
,
William R.
Brant
Diamond Proposal Number(s):
[21804]
Open Access
Abstract: Li- and Mn-rich layered oxides show significant promise as electrode materials for future Li-ion batteries. However, an accurate description of its crystallography remains elusive, with both single-phase solid solution and multiphase structures being proposed for high performing materials such as Li1.2Mn0.54Ni0.13Co0.13O2. Herein, we report the synthesis of single- and multiphase variants of this material through sol–gel and solid-state methods, respectively, and demonstrate that its crystallography is a direct consequence of the synthetic route and not necessarily an inherent property of the composition, as previously argued. This was accomplished via complementary techniques that probe the bulk and local structure followed by in situ methods to map the synthetic progression. As the electrochemical performance and anionic redox behavior are often rationalized on the basis of the presumed crystal structure, clarifying the structural ambiguities is an important step toward harnessing its potential as an electrode material.
|
Feb 2021
|
|
I11-High Resolution Powder Diffraction
|
Abstract: Electronic phase separation into charge-ordered (CO) and charge-averaged (CA) phases in
Ca
Fe
3
−
x
M
x
O
5
samples for dopants
M
=
Mn
and Co has been investigated using powder neutron and x-ray diffraction, magnetization, and Mössbauer spectroscopy measurements. Electronic phase separation is observed in lightly doped
Ca
Fe
3
O
5
samples, where
4
–
10
%
Ca is replaced by Mn, Fe, or Co, and the CA ground state is stabilized at higher doping levels. The CO and CA phases are found to emerge below a common magnetic ordering temperature at
300
–
320
K
providing strong evidence for a lattice strain-driven mechanism that couples their magnetic transitions.
|
Feb 2021
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[15444]
Abstract: Inorganic/organic hybrids have co-networks of inorganic and organic components, with the aim of obtaining synergy of the properties of those components. Here, a silica-gelatin sol-gel hybrid “ink” was directly 3D printed to produce 3D grid-like scaffolds, using a coupling agent, 3-glycidyloxypropyl)trimethoxysilane (GPTMS), to form covalent bonds between the silicate and gelatin co-networks. Scaffolds were printed with 1 mm strut separation, but the drying method affected the final architecture and properties. Freeze drying produced <40 μm struts and large ~700 μm channels. Critical point drying enabled strut consolidation and optimal mechanical properties, with ~160 μm struts and ~200 μm channels, which improved mechanical properties. This architecture was critical to cellular response: when chondrocytes were seeded on the scaffolds with 200 μm wide pore channels in vitro, collagen Type II matrix was preferentially produced (negligible amount of Type I or X were observed), indicative of hyaline-like cartilaginous matrix formation, but when pore channels were 700 μm wide, Type I collagen was prevalent. This was supported by Sox9 and Aggrecan expression. The scaffolds have potential for regeneration of articular cartilage regeneration, particularly in sports medicine cases.
|
Feb 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[24685]
Open Access
Abstract: This paper presents a diamond gammavoltaic cell – a solid state device which converts gamma radiation into electricity - with a novel design and promising capabilities. Gammavoltaics pose a unique challenge among radiovoltaics due to the highly penetrating nature of gamma rays. Adapting existing radiovoltaic and dosimeter designs by increasing their thickness risks throttling the flowing current, due to an attendant increase in series resistance. The presented design partially decouples this relationship, by creating a low-coverage hydrogen-terminated collection volume around the device, exploiting the transfer doping effect. This paper proves that hydrogen termination is necessary for the gammavoltaism exhibited. Data are then presented from current-voltage curves taken using synchrotron radiation, over the range 50 – 150 keV. A drop in series resistance over the range is discovered, and linked to the transition from the photoelectric effect to Compton scattering. The cell produces an open-circuit voltage VOC = 0.8 V. Its short-circuit current ISC and maximum power Pmax are found to also depend on photon energy, reaching maxima at ∼ 150 keV, where ISC > 10 μA and Pmax > 3 μW, normalised in flux to 2 × 1011 γ.s-1. Groundwork is hence laid for developing this type of cell for micropower applications.
|
Feb 2021
|
|