I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[30591]
Open Access
Abstract: The joint NASA-ESA Mars sample return campaign aims to return up to 31 sample tubes containing drilled sedimentary and igneous cores and regolith. The titanium alloy tubes will initially still be sealed when they are retrieved. Several types of measurement will be carried out on sealed samples in the pre-basic characterization phase of scientific investigation. We show that powder x-ray diffraction (XRD) analysis can be successfully carried out on sealed samples using an x-ray source at the I12 beamline of Diamond Light Source synchrotron. Our experiment used an analog sample tube and a Martian regolith analog (Icelandic basaltic sand). The titanium walls of the tube analog give strong but few diffraction peaks, making identification of the major constituent mineral phases feasible. A more significant constraint on quantification of mineral phase abundances by this XRD technique is likely to be the grain size of the sample. This technique opens up the possibility of initial mineralogical analysis of samples returned from Jezero crater without opening the sample tubes and the potential changes to the sample that entails.
|
Dec 2023
|
|
E01-JEM ARM 200CF
E02-JEM ARM 300CF
|
Takaaki
Noguchi
,
Toru
Matsumoto
,
Akira
Miyake
,
Yohei
Igami
,
Mitsutaka
Haruta
,
Hikaru
Saito
,
Satoshi
Hata
,
Yusuke
Seto
,
Masaaki
Miyahara
,
Naotaka
Tomioka
,
Hope A.
Ishii
,
John P.
Bradley
,
Kenta K.
Ohtaki
,
Elena
Dobrică
,
Hugues
Leroux
,
Corentin Le
Guillou
,
Damien
Jacob
,
Francisco
De La Peña
,
Sylvain
Laforet
,
Bahae-Eddine
Mouloud
,
Maya
Marinova
,
Falko
Langenhorst
,
Dennis
Harries
,
Pierre
Beck
,
Thi H. V.
Phan
,
Rolando
Rebois
,
Neyda M.
Abreu
,
Jennifer
Gray
,
Thomas
Zega
,
Pierre-M.
Zanetta
,
Michelle S.
Thompson
,
Rhonda
Stroud
,
Kate
Burgess
,
Brittany A.
Cymes
,
John C.
Bridges
,
Leon
Hicks
,
Martin R.
Lee
,
Luke
Daly
,
Phil A.
Bland
,
William A.
Smith
,
Sam
Mcfadzean
,
Pierre-Etienne
Martin
,
Paul A. J.
Bagot
,
Dennis
Fougerouse
,
David W.
Saxey
,
Steven
Reddy
,
William D. A.
Rickard
,
Michael E.
Zolensky
,
David R.
Frank
,
James
Martinez
,
Akira
Tsuchiyama
,
Masahiro
Yasutake
,
Junya
Matsuno
,
Shota
Okumura
,
Itaru
Mitsukawa
,
Kentaro
Uesugi
,
Masayuki
Uesugi
,
Akihisa
Takeuchi
,
Mingqi
Sun
,
Satomi
Enju
,
Aki
Takigawa
,
Tatsuhiro
Michikami
,
Tomoki
Nakamura
,
Megumi
Matsumoto
,
Yusuke
Nakauchi
,
Masanao
Abe
,
Satoru
Nakazawa
,
Tatsuaki
Okada
,
Takanao
Saiki
,
Satoshi
Tanaka
,
Fuyuto
Terui
,
Makoto
Yoshikawa
,
Akiko
Miyazaki
,
Aiko
Nakato
,
Masahiro
Nishimura
,
Tomohiro
Usui
,
Toru
Yada
,
Hisayoshi
Yurimoto
,
Kazuhide
Nagashima
,
Noriyuki
Kawasaki
,
Naoya
Sakamotoa
,
Peter
Hoppe
,
Ryuji
Okazaki
,
Hikaru
Yabuta
,
Hiroshi
Naraoka
,
Kanako
Sakamoto
,
Shogo
Tachibana
,
Sei‐ichiro
Watanabe
,
Yuichi
Tsuda
Diamond Proposal Number(s):
[31953, 30752]
Abstract: Samples returned from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 mission revealed that Ryugu is composed of materials consistent with CI chondrites and some types of space weathering. We report detailed mineralogy of the fine-grained Ryugu samples allocated to our “Sand” team and report additional space weathering features found on the grains. The dominant mineralogy is composed of a fine-grained mixture of Mg-rich saponite and serpentine, magnetite, pyrrhotite, pentlandite, dolomite, and Fe-bearing magnesite. These grains have mineralogy comparable to that of CI chondrites, showing severe aqueous alteration but lacking ferrihydrite and sulfate. These results are similar to previous works on large Ryugu grains. In addition to the major minerals, we also find many minerals that are rare or have not been reported among CI chondrites. Accessory minerals identified are hydroxyapatite, Mg-Na phosphate, olivine, low-Ca pyroxene, Mg-Al spinel, chromite, manganochromite, eskolaite, ilmenite, cubanite, polydymite, transjordanite, schreibersite, calcite, moissanite, and poorly crystalline phyllosilicate. We also show scanning transmission electron microscope and scanning electron microscope compositional maps and images of some space-weathered grains and severely heated and melted grains. Although our mineralogical results are consistent with that of millimeter-sized grains, the fine-grained fraction is best suited to investigate impact-induced space weathering.
|
Nov 2023
|
|
E01-JEM ARM 200CF
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[19641, 23232, 26303]
Open Access
Abstract: Synchrotron Fe‐K X‐ray absorption spectroscopy and transmission electron microscopy have been used to investigate the mineralogy and Fe‐redox variations in the space‐weathered (SW) rims of asteroidal samples. This study focuses on the FIB lift‐out sections from five Itokawa grains, returned by the Hayabusa spacecraft, including samples RB‐QD04‐0063, RB‐QD04‐0080, RB‐CV‐0011, RB‐CV‐0089, and RB‐CV‐0148. Each of the samples featured partially amorphized SW rims, caused by irradiation damage from implanted low mass solar wind ions, and the impacting of micrometeorites. Using bright‐field and HAADF‐STEM imaging, vesicular blistering and nanophase Fe metal (npFe0) particles were observed within grain rims, and solar flare tracks were observed in the substrate host grain, confirming the presence of SW zones. We use Fe‐K XANES mapping to investigate Fe‐redox changes between the host mineral and the SW zones. All SW zones measured show some increases in the ferric‐ferrous ratio (Fe3+/ΣFe) relative to their respective host grains, likely the result of the implanted solar wind H+ ions reacting with the segregated ferrous Fe in the surface material.
|
Jan 2021
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[9614]
Open Access
Abstract: Jbilet Winselwan is one of the largest CM carbonaceous chondrites available for study. Its light, major, and trace elemental compositions are within the range of other CM chondrites. Chondrules are surrounded by dusty rims and set within a matrix of phyllosilicates, oxides, and sulfides. Calcium‐ and aluminum‐rich inclusions (CAIs) are present at ≤1 vol% and at least one contains melilite. Jbilet Winselwan is a breccia containing diverse lithologies that experienced varying degrees of aqueous alteration. In most lithologies, the chondrules and CAIs are partially altered and the metal abundance is low (<1 vol%), consistent with petrologic subtypes 2.7–2.4 on the Rubin et al. (2007) scale. However, chondrules and CAIs in some lithologies are completely altered suggesting more extensive hydration to petrologic subtypes ≤2.3. Following hydration, some lithologies suffered thermal metamorphism at 400–500 °C. Bulk X‐ray diffraction shows that Jbilet Winselwan consists of a highly disordered and/or very fine‐grained phase (73 vol%), which we infer was originally phyllosilicates prior to dehydration during a thermal metamorphic event(s). Some aliquots of Jbilet Winselwan also show significant depletions in volatile elements such as He and Cd. The heating was probably short‐lived and caused by impacts. Jbilet Winselwan samples a mixture of hydrated and dehydrated materials from a primitive water‐rich asteroid. It may therefore be a good analog for the types of materials that will be encountered by the Hayabusa‐2 and OSIRIS‐REx asteroid sample‐return missions.
|
Dec 2018
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1833, 7487, 9418, 10328, 13690]
Open Access
Abstract: The mineralogy of comet 81P/Wild 2 particles, collected in aerogel by the Stardust mission, has been determined using synchrotron Fe-K X-ray absorption spectroscopy with in situ transmission XRD and X-ray fluorescence, plus complementary microRaman analyses. Our investigation focuses on the terminal grains of eight Stardust tracks: C2112,4,170,0,0; C2045,2,176,0,0; C2045,3,177,0,0; C2045,4,178,0,0; C2065,4,187,0,0; C2098,4,188,0,0; C2119,4,189,0,0; and C2119,5,190,0,0. Three terminal grains have been identified as near pure magnetite Fe3O4. The presence of magnetite shows affinities between the Wild 2 mineral assemblage and carbonaceous chondrites, and probably resulted from hydrothermal alteration of the coexisting FeNi and ferromagnesian silicates in the cometary parent body. In order to further explore this hypothesis, powdered material from a CR2 meteorite (NWA 10256) was shot into the aerogel at 6.1 km s−1, using a light-gas gun, and keystones were then prepared in the same way as the Stardust keystones. Using similar analysis techniques to the eight Stardust tracks, a CR2 magnetite terminal grain establishes the likelihood of preserving magnetite during capture in silica aerogel.
|
Jul 2017
|
|
I11-High Resolution Powder Diffraction
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[6515, 7124]
Abstract: The structural evolution of sol–gel-produced amorphous Mg(x)Ca(1–x)SiO3 silicates is investigated. Mid-IR Fourier transform infrared spectroscopy and synchrotron X-ray diffraction are used to confirm the amorphous nature of the as-prepared silicates, while subsequent in situ synchrotron X-ray powder diffraction measurements are used to study the evolution of crystalline mineral phases as a function of annealing temperature. Multiple silicate phases, including diopside, enstatite, forsterite, and SiO2, are identified, while Rietveld (i.e., structure) refinement of the diffraction data is used to quantify phase change relationships. Investigated as possible analogs for the refractory dust grain materials likely to have been present in the early solar nebula, the likely relevance of these investigations to the observed silicate compositions of chondritic meteorites and cometary bodies and the processing of their precursor materials is discussed.
|
Jul 2013
|
|
I18-Microfocus Spectroscopy
|
Abstract: We have used synchrotron Fe-XANES, XRS, microRaman, and SEM-TEM analyses of Stardust track 41 slice and track 121 terminal area slices to identify Fe oxide (magnetite-hematite and amorphous oxide), Fe-Ti oxide, and V-rich chromite (Fe-Cr-V-Ti-Mn oxide) grains ranging in size from 200 nm to ∼10 μm. They co-exist with relict FeNi metal. Both Fe-XANES and microRaman analyses suggest that the FeNi metal and magnetite (Fe2O3FeO) also contain some hematite (Fe2O3). The FeNi has been partially oxidized (probably during capture), but on the basis of our experimental work with a light-gas gun and microRaman analyses, we believe that some of the magnetite-hematite mixtures may have originated on Wild 2. The terminal samples from track 121 also contain traces of sulfide and Mg-rich silicate minerals. Our results show an unequilibrated mixture of reduced and oxidized Fe-bearing minerals in the Wild 2 samples in an analogous way to mineral assemblages seen in carbonaceous chondrites and interplanetary dust particles. The samples contain some evidence for terrestrial contamination, for example, occasional Zn-bearing grains and amorphous Fe oxide in track 121 for which evidence of a cometary origin is lacking.
|
Feb 2010
|
|