I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[25984]
Open Access
Abstract: The activity of subsurface microorganisms can be harnessed for engineering projects. For instance, the Swiss radioactive waste repository design can take advantage of indigenous microorganisms to tackle the issue of a hydrogen gas (H2) phase pressure build-up. After repository closure, it is expected that anoxic steel corrosion of waste canisters will lead to an H2 accumulation. This occurrence should be avoided to preclude damage to the structural integrity of the host rock. In the Swiss design, the repository access galleries will be back-filled, and the choice of this material provides an opportunity to select conditions for the microbially-mediated removal of excess gas. Here, we investigate the microbial sinks for H2. Four reactors containing an 80/20 (w/w) mixture of quartz sand and Wyoming bentonite were supplied with natural sulfate-rich Opalinus Clay rock porewater and with pure H2 gas for up to 108 days. Within 14 days, a decrease in the sulfate concentration was observed, indicating the activity of the sulfate-reducing bacteria detected in the reactor, e.g., from Desulfocurvibacter genus. Additionally, starting at day 28, methane was detected in the gas phase, suggesting the activity of methanogens present in the solid phase, such as the Methanosarcina genus. This work evidences the development, under in-situ relevant conditions, of a backfill microbiome capable of consuming H2 and demonstrates its potential to contribute positively to the long-term safety of a radioactive waste repository.
|
Apr 2024
|
|
I24-Microfocus Macromolecular Crystallography
|
Phillip
Nußbaum
,
Danguole
Kureisaite-Ciziene
,
Dom
Bellini
,
Chris
Van Der Does
,
Marko
Kojic
,
Najwa
Taib
,
Anna
Yeates
,
Maxime
Tourte
,
Simonetta
Gribaldo
,
Martin
Loose
,
Jan
Lowe
,
Sonja-Verena
Albers
Diamond Proposal Number(s):
[28677]
Abstract: Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea.
|
Mar 2024
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[13587]
Open Access
Abstract: YejABEF is an ATP-binding cassette transporter that is implicated in the sensitivity of Escherichia coli to anti-microbial peptides, the best-characterized example being microcin C, a peptide-nucleotide antibiotic that targets aspartyl-tRNA synthetase. Here the structure of the extracellular solute binding protein, YejA, has been determined, revealing an oligopeptide-binding protein fold enclosing a ligand-binding pocket larger than those of other peptide-binding proteins of known structure. Prominent electron density in this cavity defines an undecapeptide sequence LGEPRYAFNFN, an observation that is confirmed by mass spectrometry. In the structure, the peptide interactions with the protein are mediated by main chain hydrogen bonds with the exception of Arg5 whose guanidinium side chain makes a set of defining polar interactions with four YejA residues. More detailed characterization of purified recombinant YejA, by a combination of ESI and MALDI-mass spectrometry as well as thermal shift assays, reveals a set of YejA complexes containing overlapping peptides 10–19 residues in length. All contain the sequence LGEPRYAFN. Curiously, these peptides correspond to residues 8–26 of the mature YejA protein, which belong to a unique N-terminal extension that distinguishes YejA from other cluster C oligopeptide binding proteins of known structure. This 35-residue extension is well-ordered and packs across the surface of the protein. The undecapeptide ligand occupies only a fraction of the enclosed pocket volume suggesting the possibility that much larger peptides or peptide conjugates could be accommodated, though thermal shift assays of YejA binding to antimicrobial peptides and peptides unrelated to LGEPRYAFNFN have not provided evidence of binding. While the physiological significance of this ‘auto-binding’ is not clear, the experimental data suggest that it is not an artefact of the crystallization process and that it may have a function in the sensing of periplasmic or membrane stress.
|
Feb 2024
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[2452]
Open Access
Abstract: Phages can use a small-molecule communication arbitrium system to coordinate lysis–lysogeny decisions, but the underlying mechanism remains unknown. Here we determined that the arbitrium system in Bacillus subtilis phage phi3T modulates the bacterial toxin–antitoxin system MazE–MazF to regulate the phage life cycle. We show that phi3T expresses AimX and YosL, which bind to and inactivate MazF. AimX also inhibits the function of phi3T_93, a protein that promotes lysogeny by binding to MazE and releasing MazF. Overall, these mutually exclusive interactions promote the lytic cycle of the phage. After several rounds of infection, the phage-encoded AimP peptide accumulates intracellularly and inactivates the phage antiterminator AimR, a process that eliminates aimX expression from the aimP promoter. Therefore, when AimP increases, MazF activity promotes reversion back to lysogeny, since AimX is absent. Altogether, our study reveals the evolutionary strategy used by arbitrium to control lysis–lysogeny by domesticating and fine-tuning a phage-defence mechanism.
|
Jan 2024
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Simon G.
Caulton
,
Carey
Lambert
,
Jess
Tyson
,
Paul
Radford
,
Asmaa
Al-Bayati
,
Samuel
Greenwood
,
Emma J.
Banks
,
Callum
Clark
,
Rob
Till
,
Elisabete
Pires
,
R. Elizabeth
Sockett
,
Andrew L.
Lovering
Diamond Proposal Number(s):
[26803, 19880]
Open Access
Abstract: Predatory bacteria, like the model endoperiplasmic bacterium Bdellovibrio bacteriovorus, show several adaptations relevant to their requirements for locating, entering and killing other bacteria. The mechanisms underlying prey recognition and handling remain obscure. Here we use complementary genetic, microscopic and structural methods to address this deficit. During invasion, the B. bacteriovorus protein CpoB concentrates into a vesicular compartment that is deposited into the prey periplasm. Proteomic and structural analyses of vesicle contents reveal several fibre-like proteins, which we name the mosaic adhesive trimer (MAT) superfamily, and show localization on the predator surface before prey encounter. These dynamic proteins indicate a variety of binding capabilities, and we confirm that one MAT member shows specificity for surface glycans from a particular prey. Our study shows that the B. bacteriovorus MAT protein repertoire enables a broad means for the recognition and handling of diverse prey epitopes encountered during bacterial predation and invasion.
|
Jan 2024
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[22563]
Open Access
Abstract: The enzyme cyclic di-phosphoglycerate synthetase that is involved in the production of the osmolyte cyclic 2,3-diphosphoglycerate has been studied both biochemically and structurally. Cyclic 2,3-diphosphoglycerate is found exclusively in the hyperthermophilic archaeal methanogens, such as Methanothermus fervidus, Methanopyrus kandleri, and Methanothermobacter thermoautotrophicus. Its presence increases the thermostability of archaeal proteins and protects the DNA against oxidative damage caused by hydroxyl radicals. The cyclic 2,3-diphosphoglycerate synthetase enzyme has been crystallized and its structure solved to 1.7 Å resolution by experimental phasing. It has also been crystallized in complex with its substrate 2,3 diphosphoglycerate and the co-factor ADP and this structure has been solved to 2.2 Å resolution. The enzyme structure has two domains, the core domain shares some structural similarity with other NTP-dependent enzymes. A significant proportion of the structure, including a 127 amino acid N-terminal domain, has no structural similarity to other known enzyme structures. The structure of the complex shows a large conformational change that occurs in the enzyme during catalytic turnover. The reaction involves the transfer of the γ-phosphate group from ATP to the substrate 2,3 -diphosphoglycerate and the subsequent SN2 attack to form a phosphoanhydride. This results in the production of the unusual extremolyte cyclic 2,3 -diphosphoglycerate which has important industrial applications.
|
Nov 2023
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19915]
Open Access
Abstract: Filoviruses depend on the nucleoprotein (NP) to accomplish multiple functions during the viral life cycle. NP is the most abundantly expressed viral protein in infected cells and the main component of the viral nucleocapsid. It can be structurally divided into amino- and carboxy- terminal domains (NTD and CTD). The NTD can homo-oligomerize to interact and protect the (−) ssRNA genome, forming long helical structures. The flexible CTD is responsible for the binding of other nucleocapsid proteins and is involved in the formation of inclusion bodies (IBs)—the cytoplasmic sites of nucleocapsid formation and genome replication. The CTD ends in a ~100-residue globular tail. Měnglà virus (MLAV) is the only member of the new Dianlovirus genus within the Filoviridae family. Their differential characteristics and the possibility of becoming a threat for human health justify the interest in better understanding of its structure and function. In this work, we present the structure of the globular tail of the MLAV NP CTD, showing an overall conformation closely related to that previously reported for the equivalent NP region in MARV. Moreover, analyses of the CTD-CTD interactions in the crystal asymmetric unit revealed a higher-order helicoidal structure. Mutational studies underscore the crucial role of a number of residues, located at the CTD-CTD contact interface, for IB formation. Site-directed mutagenesis of amino acids L653 and F687, involved in the formation of these helicoidal assemblies, abrogate the growth of IBs when the full-length MLAV NP was ectopically expressed in cells. Our findings confirm the role of NP CTD in IB formation, also for MLAV, and focus the attention on particular residues as starting point for further analysis.
|
Oct 2023
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[25452]
Open Access
Abstract: Translational control is an essential process for the cell to adapt to varying physiological or environmental conditions. To survive adverse conditions such as low nutrient levels, translation can be shut down almost entirely by inhibiting ribosomal function. Here we investigated eukaryotic hibernating ribosomes from the microsporidian parasite Spraguea lophii in situ by a combination of electron cryo-tomography and single-particle electron cryo-microscopy. We show that microsporidian spores contain hibernating ribosomes that are locked in a dimeric (100S) state, which is formed by a unique dimerization mechanism involving the beak region. The ribosomes within the dimer are fully assembled, suggesting that they are ready to be activated once the host cell is invaded. This study provides structural evidence for dimerization acting as a mechanism for ribosomal hibernation in microsporidia, and therefore demonstrates that eukaryotes utilize this mechanism in translational control.
|
Sep 2023
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9475]
Open Access
Abstract: Lipopolysaccharide (LPS) is essential for most gram-negative bacteria and plays an important role in serum resistance, pathogenesis, drug resistance, and protection from harsh environments. The outer core oligosaccharide of LPS is involved in bacterial recognition and invasion of host cells. The D-galactosyltransferase WaaB is responsible for the addition of D-galactose to the outer core oligosaccharide of LPS, which is essential for Salmonella typhimurium invasion. Here we report the first crystal structures of WaaB and WaaB in complex with UDP to resolutions of 1.8 and 1.9 Å, respectively. Mutagenesis and enzyme activity assays confirmed that residues V186, K195, I216, W243, E276, and E269 of WaaB are essential for the binding and hydrolysis of UDP-galactose. The elucidation of the catalytic mechanism of WaaB is of great importance and could potentially be used for the design of novel therapeutic reagents.
|
Sep 2023
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[28534]
Open Access
Abstract: Rodent-borne hantaviruses are prevalent worldwide and upon spillover to human populations, cause severe disease for which no specific treatment is available. A potent antibody response is key for recovery from hantavirus infection. Here we study a highly neutralizing human monoclonal antibody, termed SNV-42, which was derived from a memory B cell isolated from an individual with previous Sin Nombre virus (SNV) infection. Crystallographic analysis demonstrates that SNV-42 targets the Gn subcomponent of the tetrameric (Gn−Gc)4 glycoprotein assembly that is relevant for viral entry. Integration of our 1.8 Å structure with the (Gn−Gc)4 ultrastructure arrangement indicates that SNV-42 targets the membrane-distal region of the virus envelope. Comparison of the SNV-42 paratope encoding variable genes with inferred germline gene segments reveals high sequence conservation, suggesting that germline-encoded antibodies inhibit SNV. Furthermore, mechanistic assays reveal that SNV-42 interferes with both receptor recognition and fusion during host-cell entry. This work provides a molecular-level blueprint for understanding the human neutralizing antibody response to hantavirus infection.
|
Jun 2023
|
|