B18-Core EXAFS
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[24074, 21441, 13559]
Open Access
Abstract: Neptunium (237Np) is an important radionuclide in the nuclear fuel cycle in areas such as effluent treatment and the geodisposal of radioactive waste. Due to neptunium’s redox sensitivity and its tendency to adsorb strongly to mineral phases, such as iron oxides/sulfides, the environmental mobility of Np can be altered significantly by a wide variety of chemical processes. Here, Np interactions with key iron minerals, ferrihydrite (Fe5O8H·4H2O), goethite (α-FeOOH), and mackinawite (FeS), are investigated using X-ray Absorption Spectroscopy (XAS) in order to explore the mobility of neptunyl(V) (Np(V)O2+) moiety in environmental (radioactive waste disposal) and industrial (effluent treatment plant) scenarios. Analysis of the Np LIII-edge X-ray Absorption Near-Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) showed that upon exposure to goethite and ferrihydrite, Np(V) adsorbed to the surface, likely as an inner-sphere complex. Interestingly, analysis showed that only the first two shells (Oax and Oeq) of the EXAFS could be modelled with a high degree of confidence, and there was no clear indication of Fe or carbonate in the fits. When Np(V)O2+ was added to a mackinawite-containing system, Np(V) was reduced to Np(IV) and formed a nanocrystalline Np(IV)O2 solid. An analogous experiment was also performed with U(VI)O22+, and a similar reduction was observed, with U(VI) being reduced to nanocrystalline uraninite (U(IV)O2). These results highlight that Np(V) may undergo a variety of speciation changes in environmental and engineered systems whilst also highlighting the need for multi-technique approaches to speciation determination for actinyl (for example, Np(V)O2+) species.
|
Jan 2022
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[4940]
Open Access
Abstract: In order to provide important details concerning the adsorption reactions of Sr, batch reactions and a set of both ex situ and in situ Grazing Incidence X-ray Absorption Fine Structure (GIXAFS) adsorption experiments were completed on powdered TiO2 and on rutile(110), both reacted with either SrCl2 or SrCO3 solutions. TiO2 sorption capacity for strontium (Sr) ranges from 550 ppm (SrCl2 solutions, second order kinetics) to 1400 ppm (SrCO3 solutions, first order kinetics), respectively, and is rapid. Sr adsorption decreased as a function of chloride concentration but significantly increased as carbonate concentrations increased. In the presence of carbonate, the ability of TiO2 to remove Sr from the solution increases by a factor of ~4 due to rapid epitaxial surface precipitation of an SrCO3 thin film, which registers itself on the rutile(110) surface as a strontianite-like phase (d-spacing 2.8 Å). Extended X-ray Absorption Fine Structure (EXAFS) results suggest the initial attachment is via tetradental inner-sphere Sr adsorption. Moreover, adsorbates from concentrated SrCl2 solutions contain carbonate and hydroxyl species, which results in both inner- and outer-sphere adsorbates and explains the reduced Sr adsorption in these systems. These results not only provide new insights into Sr kinetics and adsorption on TiO2 but also provide valuable information concerning potential improvements in effluent water treatment models and are pertinent in developing treatment methods for rutile-coated structural materials within nuclear power plants.
|
Dec 2021
|
|
I18-Microfocus Spectroscopy
|
Open Access
Abstract: Portlandite [Ca(OH)2] is a potentially dominant solid phase in the high pH fluids expected within the cementitious engineered barriers of Geological Disposal Facilities (GDF). This study combined X-ray Absorption Spectroscopy with computational modelling in order to provide atomic-scale data which improves our understanding of how a critically important radionuclide (U) will be adsorbed onto this phase under conditions relevant to a GDF environment. Such data are fundamental for predicting radionuclide mass transfer. Surface coordination chemistry and speciation of uranium with portlandite [Ca(OH)2] under alkaline groundwater conditions (ca. pH 12) were determined by both in situ and ex situ grazing incidence extended X-ray absorption fine structure analysis (EXAFS) and by computational modelling at the atomic level. Free energies of sorption of aqueous uranyl hydroxides, [UO2(OH)n]2–n (n = 0–5) with the (001), (100) and (203) or (101) surfaces of portlandite are predicted from the potential of mean force using classical molecular umbrella sampling simulation methods and the structural interactions are further explored using fully periodic density functional theory computations. Although uranyl is predicted to only weakly adsorb to the (001) and (100) clean surfaces, there should be significantly stronger interactions with the (203/101) surface or at hydroxyl vacancies, both prevalent under groundwater conditions. The uranyl surface complex is typically found to include four equatorially coordinated hydroxyl ligands, forming an inner-sphere sorbate by direct interaction of a uranyl oxygen with surface calcium ions in both the (001) and (203/101) cases. In contrast, on the (100) surface, uranyl is sorbed with its axis more parallel to the surface plane. The EXAFS data are largely consistent with a surface structural layer or film similar to calcium uranate, but also show distinct uranyl characteristics, with the uranyl ion exhibiting the classic dioxygenyl oxygens at 1.8 Å and between four and five equatorial oxygen atoms at distances between 2.28 and 2.35 Å from the central U absorber. These experimental data are wholly consistent with the adsorbate configuration predicted by the computational models. These findings suggest that, under the strongly alkaline conditions of a cementitious backfill engineered barrier, there would be significant uptake of uranyl by portlandite to inhibit the mobility of U(VI) from the near field of a geological disposal facility.
|
Nov 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[13606]
Open Access
Abstract: Among all iron oxides, hematite (α-Fe2O3), goethite (α-FeOOH), and ferrihydrite (FeOOH⋅nH2O) are the most common mineral species. While immobilization of Mo6+ by surface adsorption on ferric oxides has been studied extensively, the mechanisms of incorporation in their structure have been researched little. The objective of this study was to investigate the relation between Mo content and its structural incorporation in hematite, goethite, and six-line ferrihydrite by a combination of X-ray absorption spectroscopy (XAS), powder X-ray diffraction (pXRD), and inductively-coupled plasma optical emission spectrometry (ICP-OES). Synthesized in the presence of Mo, the hematite, goethite, and six-line ferrihydrite phases incorporated up to 8.52, 0.03, and 17.49 wt. % Mo, respectively. For hematite and goethite, pXRD analyses did not indicate the presence of separate Mo phases. Refined unit-cell parameters correlated with increasing Mo concentration in hematite and goethite. The unit-cell parameters indicated an increase in structural disorder within both phases and, therefore, supported the structural incorporation of Mo in hematite and goethite. Analysis of pXRD measurements of Mo-bearing six-line ferrihydrites revealed small amounts of coprecipitated akaganéite. X-ray absorption near edge structure (XANES) measurements at the Mo L3-edge indicated a strong distortion of the MoO6 octahedra in all three phases. Fitting of extended X-ray absorption fine structure (EXAFS) spectra of the Mo K-edge supported the presence of such distorted octahedra in a coordination environment similar to the Fe position in the investigated specimen. Incorporation of Mo6+ at the Fe3+-position for both hematite and goethite resulted in the formation of one Fe vacancy in close proximity to the newly incorporated Mo6+ and, therefore, charge balance within the hematite and goethite structures.
|
May 2021
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[16256]
Open Access
Abstract: The controlled crystallisation of struvite (MgNH4PO4∙6H2O) is a viable means for the recovery and recycling of phosphorus (P) from municipal and industrial wastewaters. However, an efficient implementation of this recovery method in water treatment systems requires a fundamental understanding of struvite crystallisation mechanisms, including the behavior and effect of metal contaminants during struvite precipitation. Here, we studied the crystallisation pathways of struvite from aqueous solutions using a combination of ex situ and in situ time-resolved synthesis and characterization techniques, including synchrotron-based small- and wide-angle X-ray scattering (SAXS/WAXS) and cryogenic transmission electron microscopy (cryo-TEM). Struvite syntheses were performed both in the pure Mg-NH4-PO4 system as well as in the presence of cobalt (Co), which, among other metals, is typically present in waste streams targeted for P-recovery. Our results show that in the pure system and at Co concentrations < 0.5 mM, struvite crystals nucleate and grow directly from solution, much in accordance with the classical notion of crystal formation. In contrast, at Co concentrations ≥ 1 mM, crystallisation was preceded by the transient formation of an amorphous nanoparticulate phosphate phase. Depending on the aqueous Co/P ratio, this amorphous precursor was found to transform into either (i) Co-bearing struvite (at Co/P < 0.3) or (ii) cobalt phosphate octahydrate (at Co/P > 0.3). These amorphous-to-crystalline transformations were accompanied by a marked colour change from blue to pink, indicating a change in Co2+ coordination in the formed solid from tetrahedral to octahedral. Our findings have implications for the recovery of nutrients and metals during struvite crystallisation and contribute to the ongoing general discussion about the mechanisms of crystal formation.
|
Aug 2019
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[17314]
Open Access
Abstract: Barite precipitation in fractures and nanopores within a shale sample is analysed in situ, in 3D, and over time. Diffusion of barium and sulphate from opposite sides of the sample creates a supersaturated zone where barium sulphate crystals precipitate. Time-lapse synchrotron-based computed tomography was used to track the growth of precipitates over time, even within the shale’s matrix where the nanopores are much smaller than the resolution of the technique. We observed that the kinetics of precipitation is limited by the type and size of the confinement where crystals are growing, i.e., nanopores and fractures. This has a major impact on the ion transport at the growth front, which determines the extent of precipitation within wider fractures (fast and localised precipitation), thinner fractures (non-localised and slowing precipitation) and nanopores (precipitation spread as a front moving at an approximately constant velocity of 10 ± 3 µm/h). A general sequence of events during precipitation in rocks containing pores and fractures of different sizes is proposed and its possible implications to earth sciences and subsurface engineering, e.g., fracking and mineral sequestration, are discussed.
|
Aug 2019
|
|
I15-Extreme Conditions
|
Diamond Proposal Number(s):
[9903, 11121]
Open Access
Abstract: Hydroxide perovskite solid solutions along the CuxZn1−xSn(OH)6 join have been investigated at ambient conditions. Two compositions, Cu0.4Zn0.6Sn(OH)6 (cubic) and CuSn(OH)6 (tetragonal), have also been studied at pressures up to 17 GPa. In both ambient and high-pressure experiments, samples were characterised using powder X-ray diffraction. Bulk compositions between 0 ≤ XCu ≤ 0.4 are metrically cubic (space group Pn
3
¯
3¯
), whereas those with XCu = 0.9 and 1 produced single-phase tetragonal Cu0.9Zn0.1Sn(OH)6 and CuSn(OH)6 (space group P42/n). The products of syntheses with 0.5 ≤ XCu ≤ 0.8 contain coexisting cubic and tetragonal phases. The cubic → tetragonal transformation is rationalised in terms of being driven by local strain associated with the accumulation of Cu-rich domains in the cubic phase. The high-pressure studies of cubic Cu0.4Zn0.6Sn(OH)6 and tetragonal CuSn(OH)6 phases showed contrasting behaviour. The compression curve of the cubic phase is smooth without inflexion or discontinuity to 17 GPa. The derived bulk modulus of Cu0.4Zn0.6Sn(OH)6 is K0 = 75.8(4) GPa (K′ = 4). For CuSn(OH)6, compression data cannot be fitted by a single equation-of-state over the entire pressure range to 17 GPa, as there is a clear discontinuity between 7 and 10 GPa that corresponds to an increase in compressibility at higher pressures. Compression data for CuSn(OH)6 to 7 GPa are: K0 = 59.7(9) GPa, Ka0 = 79(2) GPa, and Kc0 = 38.0(3) GPa (K′ = 4 for all). It is shown that the strong Jahn–Teller distortion associated with the Cu(OH)6 octahedron is primarily responsible for the discontinuous and highly anisotropic compressional behaviour of the unit cell of CuSn(OH)6 hydroxide perovskite.
|
Jul 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[17483]
Abstract: The crystal structure of ferrinatrite, Na3[Fe(SO4)3]·3H2O, was refined based on a new single-crystal X-ray diffraction experiment on a sample from the type locality Sierra Gorda, Chile. The data allowed H to be successfully located and the H-bonding system to be defined. Infrared and Raman spectra are presented and discussed for this compound on the basis of the crystal structure. The Oacceptor···H–Odonor bond distances determined from the structure refinement agree well with the geometric correlation obtained from spectroscopic data. The thermal stability and dehydration process of ferrinatrite was investigated by in situ high temperature (HT) synchrotron X-ray powder diffraction, Raman and Fourier transform infrared spectroscopies.
|
Jul 2018
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[15676]
Abstract: The structure of fully hydrated grossular, or katoite, contains an unusual arrangement of four O–H bonds within each O4 tetrahedra. Neutron and X-ray total scattering from a powdered deuterated sample have been measured to investigate the local arrangement of this O4D4 cluster. The O–D bond length determined directly from the pair distribution function is 0.954 Å, although the Rietveld-refined distance between average O and D positions was slightly smaller. Reverse Monte Carlo refinement of supercell models to the total scattering data show that other than the consequences of this correctly determined O–D bond length, there is little to suggest that the O4D4 structure is locally significantly different from that expected based on the average structure determined solely from Bragg diffraction.
|
Oct 2017
|
|
I15-Extreme Conditions
|
Open Access
Abstract: ABF3 compounds have been found to make valuable low-pressure analogues for high-pressure silicate phases that are present in the Earth’s deep interior and that may also occur in the interiors of exoplanets. The phase diagrams of two of these materials, KCaF3 and NaMgF3, have been investigated in detail by static ab initio computer simulations based on density functional theory. Six ABF3 polymorphs were considered, as follows: the orthorhombic perovskite structure (GdFeO3-type; space group Pbnm); the orthorhombic CaIrO3 structure (Cmcm; commonly referred to as the “post-perovskite” structure); the orthorhombic Sb2S3 and La2S3 structures (both Pmcn); the hexagonal structure previously suggested in computer simulations of NaMgF3 (P63/mmc); the monoclinic structure found to be intermediate between the perovskite and CaIrO3 structures in CaRhO3 (P21/m). Volumetric and axial equations of state of all phases considered are presented. For KCaF3, as expected, the perovskite phase is shown to be the most thermodynamically stable at atmospheric pressure. With increasing pressure, the relative stability of the KCaF3 phases then follows the sequence: perovskite → La2S3 structure → Sb2S3 structure → P63/mmc structure; the CaIrO3 structure is never the most stable form. Above about 2.6 GPa, however, none of the KCaF3 polymorphs are stable with respect to dissociation into KF and CaF2. The possibility that high-pressure KCaF3 polymorphs might exist metastably at 300 K, or might be stabilised by chemical substitution so as to occur within the standard operating range of a multi-anvil press, is briefly discussed. For NaMgF3, the transitions to the high-pressure phases occur at pressures outside the normal range of a multi-anvil press. Two different sequences of transitions had previously been suggested from computer simulations. With increasing pressure, we find that the relative stability of the NaMgF3 phases follows the sequence: perovskite → CaIrO3 structure → Sb2S3 structure → P63/mmc structure. However, only the perovskite and CaIrO3 structures are stable with respect to dissociation into NaF and MgF2.
|
Sep 2017
|
|