I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[25739, 28742]
Abstract: The ability to control the structural properties of molecular layers is a key for the design and preparation of organic electronic devices. While microscopic growth studies of planar, rigid and symmetric π-conjugated molecules have been performed to a larger extent, this is less the case for elongated donor-acceptor molecules with flexible functional groups, which are particularly interesting due to their high dipole moments. Prototypical molecules of this type are merocyanines (MCs), which have been widely studied for the use as efficient absorbers in organic photodetectors. For maximized light absorption and optimized electronic properties the molecular arrangement which is affected by the initial assembly of the films at the supporting substrate interface is decisive. The situation deserves special attention, when the surface nucleation leads to so far not known and bulk-unlike aggregates. Here, we report on the growth of a typical MC (HB238) on the Ag(100) surface, serving as the substrate. In the energetically preferred phase, the molecules adsorb in a face-on geometry and organize in tetramers with a circular dipole arrangement. The tetramers further self-order in large, enantiopure domains with a periodicity that is commensurate to the Ag(100) surface, likely due to a specific bonding of the thiophene and thiazol rings to the Ag surface. Using scanning tunneling microscopy (STM) in combination with low energy electron diffraction we derive the detailed structure of the tetramers. The center of the tetramer, which is most prominent in STM images, consists of four upward pointing tert-butyl groups from four molecules. It is encircled by a ring of four hydrogen bonds between terminal CN-groups and thiophene rings on neighboring molecules. In parallel, the surface interaction modifies the intramolecular dipole, which is revealed from photoemission spectroscopy. Hence, this example shows how the surface template effect leads to an unforeseen molecular organization which is considerably more complex to that in the bulk phases of HB238, which feature paired dipoles.
|
May 2023
|
|
I07-Surface & interface diffraction
|
Daniel T. W.
Toolan
,
Michael P.
Weir
,
Shuangqing
Wang
,
Simon A.
Dowland
,
Zhilong
Zhang
,
James
Xiao
,
Jonathan
Rawle
,
Neil
Greenham
,
Richard
Friend
,
Akshay
Rao
,
Richard A. L.
Jones
,
Anthony J.
Ryan
Diamond Proposal Number(s):
[23587]
Open Access
Abstract: Hybrid small-molecule organic semiconductor / quantum dot blend films are attractive for high efficiency low-cost solar energy harvesting devices. Understanding and controlling the self-assembly of the organic semiconductor and quantum dots is crucial in optimising device performance, not only at a lab-scale but for large-scale high-throughput printing and coating methods. Here, in situ grazing incidence X-ray scattering (GIXS) is employed in order to gain direct insights into how small-molecule organic semiconductor / quantum dot blends self-assemble during blade coating. Results show that for two different archetypal organic small molecule:quantum dot blends, small-molecule crystallisation may either occur spontaneously or be mediated by the formation of quantum dot aggregates. Irrespective of the initial crystallisation route, the small-molecule crystallisation acts to exclude the quantum dot impurities from the growing crystalline matrix phase. These results provide important fundamental understanding of structure formation of small organic molecule:quantum dot films prepared via solution processing routes, compatible with large scale deposition manufacturing.
|
May 2023
|
|
B23-Circular Dichroism
|
Diamond Proposal Number(s):
[8475, 9567]
Open Access
Abstract: Inhaled nanoparticles (NPs) depositing in the alveolar region of the lung interact initially with a surfactant layer and in vitro studies have demonstrated that NPs can adversely affect the biophysical function of model pulmonary surfactants (PS), of which surfactant protein B (SP-B) is a key component. Other studies have demonstrated the potential for NPs to modify the structure and function of proteins. It was therefore hypothesised that NPs may affect the biophysical function of PS by modifying the structure of SP-B. Synchrotron radiation circular dichroism (SRCD) spectroscopy was used to explore the effect of various concentrations of gold nanoparticles (AuNPs) (5, 10, 20 nm), silver nanoparticles (AgNPs) (10 nm) and silver citrate on the secondary structure of surfactant protein B analogue, SP-B1–25, in a TFE/PB dispersion. For Au and Ag NPs the SRCD spectra indicated a concentration dependent reduction in the α-helical structure of SP-B1–25 (5 nm AuNP ≈ 10 nm AgNP ≫ 10 nm AuNP > 20 nm AuNP). For AuNPs the effect was greater for the 5 nm size, which was not fully explained by consideration of surface area. The impact of the 10 nm AgNPs was greater than that of the 10 nm AuNPs and the effect of AgNPs was greater than that of silver citrate at equivalent Ag mass concentrations. For 10 nm AuNPs, SRCD spectra for dispersions in, the more physiologically relevant, DPPC showed a similar concentration dependent pattern. The results demonstrate the potential for inhaled NPs to modify SP-B1–25 structure and thus potentially adversely impact the physiological function of the lung, however, further studies are necessary to confirm this.
|
Feb 2023
|
|
E02-JEM ARM 300CF
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[16983, 19130, 20195, 21979, 22395, 20038]
Open Access
Abstract: Characterization of nanoscale changes in the atomic structure of amorphous materials is a profound challenge. Established X-ray and neutron total scattering methods typically provide sufficient signal quality only over macroscopic volumes. Pair distribution function analysis using electron scattering (ePDF) in the scanning transmission electron microscope (STEM) has emerged as a method of probing nanovolumes of these materials, but inorganic glasses as well as metal–organic frameworks (MOFs) and many other materials containing organic components are characteristically prone to irreversible changes after limited electron beam exposures. This beam sensitivity requires ‘low-dose’ data acquisition to probe inorganic glasses, amorphous and glassy MOFs, and MOF composites. Here, we use STEM-ePDF applied at low electron fluences (10 e-/Å2) combined with unsupervised machine learning methods to map changes in the short-range order with ca. 5 nm spatial resolution in a composite material consisting of a zeolitic imidazolate framework glass agZIF-62 and a 0.67([Na2O]0.9[P2O5])-0.33([AlO3/2][AlF3]1.5) inorganic glass. STEM-ePDF enables separation of MOF and inorganic glass domains from atomic structure differences alone, showing abrupt changes in atomic structure at interfaces with interatomic correlation distances seen in X-ray PDF preserved at the nanoscale. These findings underline that the average bulk amorphous structure is retained at the nanoscale in the growing family of MOF glasses and composites, a previously untested assumption in PDF analyses crucial for future non-crystalline nanostructure engineering.
|
Oct 2022
|
|
E02-JEM ARM 300CF
|
Mauro
Och
,
Kostantinos
Anastasiou
,
Ioannis
Leontis
,
Giulia
Zemignani
,
Pawel
Palczynski
,
Ali
Mostaed
,
Maria S.
Sokolikova
,
Evgeny M.
Alexeev
,
Haoyu
Bai
,
Alexander
Tartakovskii
,
Johannes
Lischner
,
Peter D.
Nellist
,
Saverio
Russo
,
Cecilia
Mattevi
Diamond Proposal Number(s):
[20431, 22317]
Open Access
Abstract: Tuning the charge transport properties of two-dimensional transition metal dichalcogenides (TMDs) is pivotal to their future device integration in post-silicon technologies. To date, co-doping of TMDs during growth still proves to be challenging, and the synthesis of doped WSe2, an otherwise ambipolar material, has been mainly limited to p-doping. Here, we demonstrate the synthesis of high-quality n-type monolayered WSe2 flakes using a solid-state precursor for Se, zinc selenide. n-Type transport has been reported with prime electron mobilities of up to 10 cm2V-1s-1. We also demonstrate tuneability of the doping, to a p-type transport with hole mobilities of 50 cm2V-1s-1 after annealing in air. The n-doping has been attributed to the presence of Zn adatoms on the WSe2 flakes as revealed by x-ray photoelectron spectroscopy (XPS), spatially resolved time of flight secondary ion mass spectroscopy (SIMS) and angular dark-field scanning transmission electron microscopy (AD-STEM) characterization of WSe2 flakes. Monolayer WSe2 flakes exhibit a sharp photoluminescence (PL) peak at room temperature and a highly uniform emission across the entire flake area, indicating a high degree of crystallinity of the material. This work provides new insights into the synthesis of TMDs with charge carrier control, to pave the way towards post-silicon electronics.
|
Sep 2022
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[28659]
Open Access
Abstract: The large-scale use of glyphosate pesticides in food production has attracted attention due to environmental damage and toxicity risks. Several regulatory authorities have established safe limits or concentrations of these pesticides in water and various food products consumed daily. The irreversible inhibition of acetylcholinesterase (AChE) activity is one of the strategies used for pesticide detection. Herein, we found that lipopeptide sequences can act as biomimetic microenvironments of AChE, showing higher catalytic activities than natural enzymes in an aqueous solution, based on IC50 values. These biomolecules contain in the hydrophilic part the amino acids L-proline (P), L-arginine (R), L-tryptophan (W), and L-glycine (G), covalently linked to a hydrophobic part formed by one or two long aliphatic chains. The obtained materials are referred to as compounds 1 and 2, respectively. According to fluorescence assays, 2 is more hydrophobic than 1. The circular dichroism (CD) data present a significant difference in the molar ellipticity values, likely related to distinct conformations assumed by the proline residue in the lipopeptide supramolecular structure in solution. The morphological aspect was further characterized using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM), which showed that compounds 1 and 2 self-assembly into cylindrical and planar core–shell structures, respectively. The mimetic AchE behaviour of lipopeptides was confirmed by Ellman's hydrolysis reaction, where the proline residue in the peptides act as a nucleophilic scavenger of organophosphate pesticides. Moreover, the isothermal titration calorimetry (ITC) experiments revealed that host–guest interactions in both systems were dominated by enthalpically-driven thermodynamics. UV-vis kinetic experiments were performed to assess the inhibition of the lipopeptide catalytic activity and the IC50 values were obtained, and we found that the detection limit correlated with the increase in hydrophobicity of the lipopeptides, implying the micellization process is more favorable.
|
Aug 2022
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[21922]
Open Access
Abstract: A high-throughput method for the fabrication of ordered arrays of Au nanoparticles is presented. It is based on pulsed electrodeposition into porous anodic alumina templates. In contrast to many synthesis routes, it is cyanide-free, prior separation of the alumina template from the aluminium substrate is not required, and the use of contaminating surfactants/capping agents often found in colloidal synthesis is avoided. The aspect ratio of the nanoparticles can also be tuned by selecting an appropriate electrodeposition time. We show how to fabricate arrays of nanoparticles, both with branched bases and with hemispherical bases. Furthermore, we compare the different morphologies produced with electron microscopies and grazing-incidence synchrotron X-ray diffraction. We find the nanoparticles are polycrystalline in nature and are compressively strained perpendicular to the direction of growth, and expansively strained along the direction of growth. We discuss how this can produce dislocations and twinning defects that could be beneficial for catalysis.
|
May 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[20060]
Abstract: Various electrode materials are considered for sodium-ion batteries (SIBs) and one important prerequisite for developments of SIBs is a detailed understanding about charge storage mechanisms. Herein, we present a rigorous study about Na storage properties of ultra-small Fe3S4 nanoparticles, synthesized applying a solvothermal route, which exhibit a very good electrochemical performance as anode material for SIBs. A closer look into electrochemical reaction pathways on the nanoscale, utilizing synchrotron-based X-ray diffraction and X-ray absorption techniques, reveals a complicated conversion mechanism. Initially, separation of Fe3S4 into nanocrystalline intermediates occurs accompanied by reduction of Fe3+ to Fe2+ cations. Discharge to 0.1 V leads to formation of strongly disordered Fe0 finely dispersed in a nanosized Na2S matrix. The resulting volume expansion leads to a worse long-term stability in the voltage range 3.0–0.1 V. Adjusting the lower cut-off potential to 0.5 V, crystallization of Na2S is prevented and a completely amorphous intermediate stage is formed. Thus, the smaller voltage window is favorable for long-term stability, yielding highly reversible capacity retention, e.g., 486 mAh g−1 after 300 cycles applying 0.5 A g−1 and superior coulombic efficiencies >99.9%. During charge to 3.0 V, Fe3S4 with smaller domains are reversibly generated in the 1st cycle, but further cycling results in loss of structural long-range order, whereas the local environment resembles that of Fe3S4 in subsequent charged states. Electrokinetic analyses reveal high capacitive contributions to the charge storage, indicating shortened diffusion lengths and thus, redox reactions occur predominantly at surfaces of nanosized conversion products.
|
Jan 2022
|
|
I24-Microfocus Macromolecular Crystallography
|
Helen M. E.
Duyvesteyn
,
Isaac
Santos-Perez
,
Francesca
Peccati
,
Ane
Martinez-Castillo
,
Thomas S.
Walter
,
David
Reguera
,
Felix M.
Goñi
,
Gonzalo
Jiménez-Osés
,
Hanna M.
Oksanen
,
David I.
Stuart
,
Nicola G. A.
Abrescia
Diamond Proposal Number(s):
[14744]
Open Access
Abstract: Viruses are very attractive biomaterials owing to their capability as nanocarriers of genetic material. Efforts have been made to functionalize self-assembling viral protein capsids on their exterior or interior to selectively take up different payloads. PRD1 is a double-stranded DNA bacteriophage comprising an icosahedral protein outer capsid and an inner lipidic vesicle. Here, we report the three-dimensional structure of PRD1 in complex with the antipsychotic drug chlorpromazine (CPZ) by cryo-electron microscopy. We show that the jellyrolls of the viral major capsid protein P3, protruding outwards from the capsid shell, serve as scaffolds for loading heterocyclic CPZ molecules. Additional X-ray studies and molecular dynamics simulations show the binding modes and organization of CPZ molecules when complexed with P3 only and onto the virion surface. Collectively, we provide a proof of concept for the possible use of the lattice-like organisation and the quasi-symmetric morphology of virus capsomers for loading heterocyclic drugs with defined properties.
|
Dec 2021
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[15729]
Abstract: Structural characterization in on-surface synthesis is primarily carried out by Scanning Probe Microscopy (SPM) which provides high lateral resolution. Yet, important fresh perspectives on surface interactions and molecular conformations are gained from adsorption heights that remain largely inaccessible to SPM, but can be precisely measured with both elemental and chemical sensitivity by Normal-Incidence X-ray Standing Wave (NIXSW) analysis. Here, we study the evolution of adsorption heights in the on-surface synthesis and post-synthetic decoupling of porous covalent triazine–phenylene networks obtained from 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (TBPT) precursors on Ag(111). Room temperature deposition of TBPT and mild annealing to ∼150 °C result in full debromination and formation of organometallic intermediates, where the monomers are linked into reticulated networks by C–Ag–C bonds. Topologically identical covalent networks comprised of triazine vertices that are interconnected by biphenyl units are obtained by a thermally activated chemical transformation of the organometallic intermediates. Exposure to iodine vapor facilitates decoupling by intercalation of an iodine monolayer between the covalent networks and the Ag(111) surface. Accordingly, Scanning Tunneling Microscopy (STM), X-ray Photoelectron Spectroscopy (XPS) and NIXSW experiments are carried out for three successive sample stages: organometallic intermediates, covalent networks directly on Ag(111) and after decoupling. NIXSW analysis facilitates the determination of adsorption heights of chemically distinct carbon species, i.e. in the phenyl and triazine rings, and also for the organometallic carbon atoms. Thereby, molecular conformations are assessed for each sample stage. The interpretation of experimental results is informed by Density Functional Theory (DFT) calculations, providing a consistent picture of adsorption heights and molecular deformations in the networks that result from the interplay between steric hindrance and surface interactions. Quantitative adsorption heights, i.e. vertical distances between adsorbates and surface, provide detailed insight into surface interactions, but are underexplored in on-surface synthesis. In particular, the direct comparison with an in situ prepared decoupled state unveils the surface influence on the network structure, and shows that iodine intercalation is a powerful decoupling strategy.
|
Dec 2021
|
|